Normal Distribution.

1) The standard error of the mean is given by
A) $|\mu-\bar{x}|$
B) $\mu-\bar{x}$
C) $\frac{\sigma}{\sqrt{n}}$
D) $\mu \pm \sigma$
2) Furnace repair bills are normally distributed with a mean of 273 dollars and a standard deviation of 25 dollars. If 100 of these repair bills are randomly selected, find the probability that they have a mean cost between 273 dollars and 275 dollars. Sketch a graph.
3) $\mathrm{N}=20,000, \mathrm{n}=600, \mathrm{p}=0.3$

Check if the distribution is normal, verify independence then find $\mu_{p} \& \sigma_{p}$.
4) The National Association of Realtors estimates that 23% of all homes purchased in 2004 were considered investment properties. If a sample of 800 homes sold in 2004 is obtained what is the probability that at most 200 homes are going to be used as investment property? Sketch a graph.

Minimum sample size

5) Determine the sample size required to estimate the mean score on a standardized test within 4 points of the true mean with 90% confidence. Assume that s=15 based on earlier studies.

Confidence Intervals.

6) A survey of 700 non-fatal accidents showed that 167 involved uninsured drivers.
a)Sketch a graph,
b)find the point estimater,
c) construct a 99% confidence interval for the proportion of fatal accidents that involved uninsured drivers
d) find the error
e) and find the critcal values .
f) Would it be a correct assumption to say 245 out of 700 accidents will result as non-fatal?
7) A sample of 25 randomly English majors has a mean test score of 81.5 with a standard deviation of 10.2.
a)Sketch a graph,
b)find the point estimater, c)construct a 95% confidence interval for the population mean, μ. Assume the population has a normal distribution
d) find the error
e) and find the critcal values .
f) is it correct to assume a score of 80 is lickly?
8) The June precipitation (in inches) for 10 randomly selected cities are listed below.. Assume the data are normally distributed.
a)Sketch a graph,
b)find the point estimater,
c)Construct a 90% confidence interval for the population standard deviation, σ.
d) find the error
e) and find the critcal values .

$$
\begin{array}{lllll}
2.0 & 3.2 & 1.8 & 2.9 & 0.9 \\
4.0 & 3.3 & 2.9 & 3.6 & 0.8
\end{array}
$$

Hypothese testing. (4 steps)

9) A local group claims that the police issue 56 parking tickets a day in their area. To prove their point, they randomly select two weeks. Their research yields the number of tickets issued for each day. The data are listed below. At $\alpha=0.01$, test the group's claim. Round the test statistic to the nearest thousandth.
```
70}448\quad41 68 69 55 70 57 60 83 
32
```

10) Fifty percent of registered voters in a congressional district are registered Democrats. The Republican candidate takes a poll to assess his chances in a two-candidate race. He polls 1200 potential voters and finds that 621 plan to vote for the Democratic candidate. Does the Republican candidate have a chance to win? Use $\alpha=0.05$.
11) A statistics professor at an all-men's college determined that the standard deviation of men's heights is 2.5 inches. The professor then randomly selected 41 female students from a nearby all-female college and found the standard deviation to be 3.3 inches. Test the professor's claim that the standard deviation of female heights is greater than 2.5 inches. Use $\alpha=0.01$.

HypTest Step1:

12) The mean repair bill of cars is greater than $\$ 150$. Write the null and alternative hypotheses.
13) A popular referendum on the ballot is favored by more than half of the voters. Write the null and alternative hypotheses.

Hyp Test Step 4:

14) The mean age of judges in Dallas is greater than 58.8 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
A) There is sufficient evidence to reject the claim $\mu>58.8$.
B) There is sufficient evidence to support the claim $\mu>58.8$.
C) There is not sufficient evidence to reject the claim $\mu>58.8$.
D) There is not sufficient evidence to support the claim $\mu>58.8$.
15) The mean monthly gasoline bill for one household is greater than $\$ 120$. If a hypothesis test is performed, how should you interpret a decision that rejects the null hypothesis?
A) There is not sufficient evidence to reject the claim $\mu>\$ 120$.
B) There is not sufficient evidence to support the claim $\mu>\$ 120$.
C) There is sufficient evidence to reject the claim $\mu>\$ 120$.
D) There is sufficient evidence to support the claim $\mu>\$ 120$.
16) The mean age of professors at a university is 52.2 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
A) There is sufficient evidence to reject the claim $\mu=52.2$.
B) There is not sufficient evidence to reject the claim $\mu=52.2$.
C) There is sufficient evidence to support the claim $\mu=52.2$.
D) There is not sufficient evidence to support the claim $\mu=52.2$.

Errors

17) The mean cost of textbooks for one class is greater than $\$ 130$. Identify the type I and type II errors for the hypothesis test of this claim.
18) The level of significance, α, is the probability of making a
A) Correct decision
B) Type β error
C) Type II error
D) Type I error
19) If we do not reject the null hypothesis when the null hypothesis is in error, then we have made a
A) Type β error
B) Correct decision
C) Type II error
D) Type I error
20) If we reject the null hypothesis when the null hypothesis is true, then we have made a
A) Type I error
B) Type α error
C) Type II error
D) Correct decision

Testname: STAT_MATH120R3

1) C
2) $\operatorname{normalcdf}\left(273,275,273, \frac{25}{\sqrt{100}}\right)=0.2881$
3) Approximately normal since $\mathbf{n p q}>10$; independent since $\mathrm{n}<.05 \mathrm{~N}$
$\mu_{\mathrm{p}}=0.3, \sigma_{\mathrm{p}}=0.019$
4) normalcdf(-E9, $\left..25, .23, \sqrt{\frac{(.23)(.77)}{800}}\right)=0.9099$
5) 39
$\mathrm{n}=\left(\mathrm{z}^{*} \mathrm{~s} / \mathrm{E}\right)^{2}$
always round up
6) point estimater $=.239$

1-prop Z Int
$\mathrm{n}=700 \mathrm{x}=167 \hat{\mathrm{p}}=.239$
(0.197, 0.280)
error= 041
crit val $\mathrm{Z}=\operatorname{invnorm}(.005,0,1)= \pm 2.58$
no since .35 is outside the interval.
7) point estimater $=81.5$

T Interval
$\mathrm{n}=25 \mathrm{x}=81.5 \mathrm{~s}=10.2$
(77.29, 85.71)
error $=4.21$
crit val $\mathrm{t}=\operatorname{invT}(.025,24)= \pm 2.06$
yes , since 80 is inside the interval
8) point estimater $=1.11$

Infer about σ
$\mathrm{n}=10 \quad \overline{\mathrm{x}}=2.54 \quad \mathrm{~s}=1.11 \quad$ C.L. $=.90$
(0.81, 1.83)
error= $=72$
critical χ^{2}.
d.f=9
$\chi_{\alpha / 2}^{2}=16.92$
$\chi \stackrel{2}{1-\alpha / 2}=3.33$
9) Step1: Nulll, Alt\&Claim
$\mathrm{H}_{0}: \mu=56$ (claim)
$\mathrm{H}_{1}: \mu \neq 56$
Step2: Statistics
1-varstat
$\overline{\mathrm{x}}=60.21, \mathrm{~s}=13.43$
$\mathrm{n}=14 \quad \alpha=0.01$
Step3: Graph\&Calculations
InvT
area to left=. 005
d.f. $=13$

Crit value $\mathrm{t}= \pm 3.01$
T-Test
Test Stat $\mathrm{t}=1.17$
p-value = . 2619
Step4: Dissision\&Conclusion
null: do not reject
alt: reject
claim: do not reject
There is not sufficient evidence to reject the claim that the police issue 56 parking tickets in a day.
10) Step1: Null,Alt\&Claim
$H_{0}: p=0.50$
$\mathrm{H}_{1}: \mathrm{p}<0.50$ (claim)
Step2: Statistics
$\mathrm{n}=1200$ ค $=.5175$
$\mathrm{x}=621 \quad \alpha=0.05$

Step3: Graph\&Calculations

Invnorm
area to left=. 05
Crit value $\mathrm{z}=-1.65$
1-propZtest
Test Stat $\mathrm{z}=1.21$
p -value $=.8873$
Step4: Dissision\&Conclusion
null: do not reject
alt: reject
claim: reject
There is not sufficient evidence to support the claim that the proportion of voters who vote democrat will be in the minority ($\mathrm{p}<0.5$). Thus, it does not appear the Republican candidate will win the eleection.
11) Step1: Nulll, Alt\&Claim
$\mathrm{H}_{0}: \sigma=2.5$
$\mathrm{H}_{1}: \sigma>2.5$ (claim)
Step2: Statistics
$\mathrm{n}=41 \quad \mathrm{~s}=3.3$
$\alpha=0.01$
Step3: Graph\&Calculations
critical χ^{2}
area to right=. 01
d.f. $=40$

Crit value $\chi^{2}=63.69$
T-Test
Test Stat $\chi^{2}=69.70$
p-value = .0025
Step4: Dissision\&Conclusion
null: reject
alt: do not reject
claim: do not reject
There is sufficient evidence to support the claim that the standard deviation of female heights is greater than 2.5 inches.
12) $\mathrm{H}_{0}: \mu=\$ 150, \mathrm{H}_{1}: \mu>\$ 150$ (claim)
13) $\mathrm{H}_{0}: \mathrm{p}=0.5, \mathrm{H}_{1}: \mathrm{p}>0.5$ (claim)
14) D
15) D
16) B
17) type I: rejecting $\mathrm{H}_{0}: \mu=\$ 130$ when infact $\mu \leq \$ 130$
type II: failing to reject $\mathrm{H}_{0}: \mu=\$ 130$ when $\mu>\$ 130$
18) D
19) C
20) A

