1) The standard error of the mean is given by

A)
$$|\mu - \overline{x}|$$

B) $\mu - \overline{x}$
D) $\mu \pm \sigma$

- 2) Furnace repair bills are normally distributed with a mean of 273 dollars and a standard deviation of 25 dollars. If 100 of these repair bills are randomly selected, find the probability that they have a mean cost between 273 dollars and 275 dollars. Sketch a graph.
- 3) N = 20,000, n = 600, p = 0.3 Check if the distribution is normal, verify independence then find $\mu_p \& \sigma_p$.
- 4) The National Association of Realtors estimates that 23% of all homes purchased in 2004 were considered investment properties. If a sample of 800 homes sold in 2004 is obtained what is the probability that at most 200 homes are going to be used as investment property? Sketch a graph.

Minimum sample size

5) Determine the sample size required to estimate the mean score on a standardized test within 4 points of the true mean with 90%confidence. Assume that s = 15 based on earlier studies.

Confidence Intervals.

- 6) A survey of 700 non-fatal accidents showed that 167 involved uninsured drivers.
 a)Sketch a graph,
 b)find the point estimater,
 c)construct a 99% confidence interval for the proportion of fatal accidents that involved uninsured drivers
 d) find the error
 e) and find the critcal values .
 f) Would it be a correct assumption to say 245 out of 700 accidents will result as non-fatal?
- 7) A sample of 25 randomly English majors has a mean test score of 81.5 with a standard deviation of 10.2.
 a)Sketch a graph,
 b)find the point estimater,
 c)construct a 95% confidence interval for the population mean, μ. Assume the population has a normal distribution
 d) find the error
 e) and find the critcal values .
 f) is it correct to assume a score of 80 is lickly?
- 8) The June precipitation (in inches) for 10 randomly selected cities are listed below.. Assume the data are normally distributed.
 a)Sketch a graph,
 b)find the point estimater,
 c)Construct a 90% confidence interval for the population standard deviation, σ.
 d) find the error
 e) and find the critcal values .
 - 2.0 3.2 1.8 2.9 0.9
 - 4.0 3.3 2.9 3.6 0.8

J Ramirez

Hypothese testing. (4 steps)

9) A local group claims that the police issue 56 parking tickets a day in their area. To prove their point, they randomly select two weeks. Their research yields the number of tickets issued for each day. The data are listed below. At α = 0.01, test the group's claim. Round the test statistic to the nearest thousandth.

70 48 41 68 69 55 70 57 60 83 32 60 72 58

- 10) Fifty percent of registered voters in a congressional district are registered Democrats. The Republican candidate takes a poll to assess his chances in a two-candidate race. He polls 1200 potential voters and finds that 621 plan to vote for the Democratic candidate. Does the Republican candidate have a chance to win? Use $\alpha = 0.05$.
- 11) A statistics professor at an all-men's college determined that the standard deviation of men's heights is 2.5 inches. The professor then randomly selected 41 female students from a nearby all-female college and found the standard deviation to be 3.3 inches. Test the professor's claim that the standard deviation of female heights is greater than 2.5 inches. Use $\alpha = 0.01$.

HypTest Step1:

- 12) The mean repair bill of cars is greater than \$150. Write the null and alternative hypotheses.
- 13) A popular referendum on the ballot is favored by more than half of the voters. Write the null and alternative hypotheses.

Hyp Test Step 4:

- 14) The mean age of judges in Dallas is greater than 58.8 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
 - A) There is sufficient evidence to reject the claim μ > 58.8.
 - B) There is sufficient evidence to support the claim μ > 58.8.
 - C) There is not sufficient evidence to reject the claim $\mu > 58.8$.
 - D) There is not sufficient evidence to support the claim $\mu > 58.8$.
- 15) The mean monthly gasoline bill for one household is greater than \$120. If a hypothesis test is performed, how should you interpret a decision that rejects the null hypothesis?
 - A) There is not sufficient evidence to reject the claim $\mu >$ \$120.
 - B) There is not sufficient evidence to support the claim $\mu >$ \$120.
 - C) There is sufficient evidence to reject the claim μ > \$120.
 - D) There is sufficient evidence to support the claim $\mu >$ \$120.
- 16) The mean age of professors at a university is 52.2 years. If a hypothesis test is performed, how should you interpret a decision that fails to reject the null hypothesis?
 - A) There is sufficient evidence to reject the claim μ = 52.2.
 - B) There is not sufficient evidence to reject the claim μ = 52.2.
 - C) There is sufficient evidence to support the claim μ = 52.2.
 - D) There is not sufficient evidence to support the claim μ = 52.2.

Errors

- 17) The mean cost of textbooks for one class is greater than \$130. Identify the type I and type II errors for the hypothesis test of this claim.
- 18) The level of significance, α , is the probability of making a
 - A) Correct decision
 - B) Type β error
 - C) Type II error
 - D) Type I error
- 19) If we do not reject the null hypothesis when the null hypothesis is in error, then we have made a
 - A) Type β error
 - B) Correct decision
 - C) Type II error
 - D) Type I error
- 20) If we reject the null hypothesis when the null hypothesis is true, then we have made a
 - A) Type I error
 - B) Type α error
 - C) Type II error
 - D) Correct decision

Answer Key Testname: STAT_MATH120R3

1) C 2) normalcdf(273,275,273, $\frac{25}{\sqrt{100}}$) = 0.2881 3) Approximately normal since **npq** >10; independent since n < .05N $\mu_p = 0.3, \sigma_p = 0.019$ 4) normalcdf(-E9, .25, .23, $\sqrt{\frac{(.23)(.77)}{800}}$) = 0.9099 5) 39 $n=(z*s/E)^2$ always round up 6) point estimater = .2391-prop Z Int n=700 x=167 $\stackrel{\text{A}}{\text{p}}$ = .239 (0.197, 0.280)error=.041 crit val $Z = invnorm(.005,0,1) = \pm 2.58$ no since .35 is outside the interval. 7) point estimater = 81.5T Interval $n=25 \ x = 81.5 \ s = 10.2$ (77.29, 85.71) error = 4.21crit val $t = invT(.025,24) = \pm 2.06$ yes, since 80 is inside the interval 8) point estimater = 1.11Infer about σ $n=10 \ x=2.54 \ s=1.11 \ C.L.=.90$ (0.81, 1.83)error=.72 critical χ^2 . d.f=9 $\chi^{2}_{\alpha/2} = 16.92$ $\chi^{2}_{1-\alpha/2} = 3.33$

Answer Key Testname: STAT_MATH120R3

> 9) Step1: Nulll, Alt&Claim $H_0: \mu = 56$ (claim) $H_1: \mu \neq 56$ **Step2: Statistics** 1-varstat x = 60.21, s = 13.43 n=14 $\alpha = 0.01$ Step3: Graph&Calculations InvT area to left=.005 d.f.=13 Crit value $t=\pm 3.01$ T-Test Test Stat t=1.17 p-value = .2619 Step4: Dissision&Conclusion null: do not reject alt: reject claim: do not reject

There is not sufficient evidence to reject the claim that the police issue 56 parking tickets in a day.

10) Step1: Null,Alt&Claim

 $H_0: p = 0.50$

 $H_1: p < 0.50$ (claim)

Step2: Statistics

n=1200 $\bigwedge_{p=.5175}^{A}$ x=621 $\alpha = 0.05$ Step3: Graph&Calculations Invnorm area to left=.05 Crit value z=-1.65 1-propZtest Test Stat z=1.21 p-value = .8873 Step4: Dissision&Conclusion null: do not reject alt: reject claim: reject There is not sufficient evidence to

There is not sufficient evidence to support the claim that the proportion of voters who vote democrat will be in the minority (p < 0.5). Thus, it does not appear the Republican candidate will win the election.

Answer Key Testname: STAT_MATH120R3

11) Step1: Nulll, Alt&Claim

 $H_0: \sigma = 2.5$ $H_1: \sigma > 2.5$ (claim) **Step2: Statistics** $n=41 \quad s=3.3$ $\alpha = 0.01$ Step3: Graph&Calculations critical χ^2 area to right=.01 d.f.=40 Crit value $\chi^2 = 63.69$ T-Test Test Stat χ^2 =69.70 p-value = .0025 Step4: Dissision&Conclusion null: reject alt: do not reject claim: do not reject

There is sufficient evidence to support the claim that the standard deviation of female heights is greater than 2.5 inches.

12) $H_0: \mu = \$150, H_1: \mu > \150 (claim) 13) $H_0: p = 0.5, H_1: p > 0.5 \text{ (claim)}$ 14) D 15) D 16) B 17) type I: rejecting $H_0: \mu = \$130$ when infact $\mu \le \$130$ type II: failing to reject $H_0: \mu = \$130$ when $\mu > \$130$ 18) D 19) C 20) A