

2.1 Organizing Qualitative Data

2.1.1 Organize Qualitative Data in Tables (1 of 8)

A frequency distribution lists each category of data and the number of occurrences for each category of data.
When data is collected from a survey or designed
experiment, they must be organized into a manageable form. Data that is not organized is referred to as raw data.
Ways to Organize Data

- Tables
- Graphs
- Numerical Summaries (Chapter 3)

2.1 Organizing Qualitative Data
 2.1.1 Organize Qualitative Data in Tables (3 of 8)

EXAMPLE Organizing Qualitative Data into a Frequency Distribution

The data represent the color of M\&Ms in a bag of plain M\&Ms.
brown, brown, yellow, red, red, red, brown, orange, blue, green, blue, brown, yellow, yellow, brown, red, red, brown, brown, brown, green, blue, green, orange, orange, yellow, yellow, yellow, red, brown, red, brown, orange, green, red, brown, yellow, orange, red, green, yellow, yellow, brown, yellow, orange

2.1 Organizing Qualitative Data
 2.1.1 Organize Qualitative Data in Tables (4 of 8)

Frequency table

Color	Tally	Frequency
Brown	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$	12
Yellow	$\|\|\|\|\|\|\|\|\|\mid$	10
Red	$\|\|\|\|\|\|\|\|\mid$	9
Orange	$\|\|\|\|\|\mid$	6
Blue	$\|\|\|\|\|\|\mid$	3
Green	$\|\|\|\mid$	5

2.1 Organizing Qualitative Data

2.1.1 Organize Qualitative Data in Tables (5 of 8)

The relative frequency is the proportion (or percent) of observations within a category and is found using the formula:

$$
\text { relative frequency }=\frac{\text { frequency }}{\text { sum of all frequencies }}
$$

A relative frequency distribution lists each category of data with the relative frequency.

2.1 Organizing Qualitative Data
 2.1.1 Organize Qualitative Data in Tables (7 of 8)

Frequency table

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (1 of 13)

A bar graph is constructed by labeling each category of data on either the horizontal or vertical axis as a bar.
... the frequency or relative frequency of the category on the other axis. Rectangles of equal width are drawn for each category. The height of each rectangle represents the category's frequency or relative frequency.
2.1 Organizing Qualitative Data
2.1.1 Organize Qualitative Data in Tables (8 of 8)

Frequency table

Color	Tally	Frequency	Relative Frequency
Brown	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$	12	$\frac{12}{45} \approx 0.2667$
Yellow	$\|\|\|\|\|\|\|\|\|\|\mid$	10	0.2222
Red	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$	9	0.2
Orange	$\|\|\|\|\mid$	6	0.1333
Blue	$\|\|\mid$	3	0.0667

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved (P) Pearson

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (2 of 13)

EXAMPLE Constructing a Frequency and Relative Frequency Bar Graph
Use the M\&M data to construct
a) a frequency bar graph and
b) a relative frequency bar graph

2.1 Organizing Qualitative Data 2.1.2 Construct Bar Graphs (5 of 13)															
Frequency table															
Color	Tally	Frequency	Relative Frequency												
Brown	\|												12	$\frac{12}{45} \approx 0.2667$	
Yellow	\|	I								10	0.2222				
Red	\|IIII		I			9	0.2								
Orange	\|	II			6	0.1333									
Blue	III	3	0.0667												
Green	\|III		5	0.1111											
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved				(P) Pearson											

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (4 of 13)

Bar Graph for M\&M Color

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (7 of 13)

A Pareto chart is a bar graph where the bars are drawn in decreasing order of frequency or relative frequency.

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (9 of 13)

Side-by-Side Bar Graphs compare two or more data sets. Note we must use relative frequencies.

Suppose we want to know whether more people are finishing college today than in 1990. We could draw a side-by-side bar graph to compare the data for the two different years. Data sets should be compared by using relative frequencies, because different sample or population sizes make comparisons using frequencies difficult or misleading.

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (10 of 13)

EXAMPLE Comparing Two Data Sets

The following data represent the marital status (in millions) of U.S. residents 18 years of age or older in 1990 and 2006. Draw a side-by-side relative frequency bar graph of the data.

Marital Status	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 6}$
Never married	40.4	55.3
Married	112.6	127.7
Widowed	13.8	13.9
Divorced	15.1	22.8

2.1 Organizing Qualitative Data
 2.1.2 Construct Bar Graphs (11 of 13)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

2.1 Organizing Qualitative Data

2.1.2 Construct Bar Graphs (12 of 13)

Horizontal Bars

Bar graphs may also be drawn with horizontal bars. Horizontal bars are preferable when category names are lengthy.

2.1 Organizing Qualitative Data
 2.1.3 Construct Pie Charts (1 of 3)

A pie chart is a circle divided into sectors. Each sector represents a category of data. The area of each sector is proportional to the frequency of the category.

2.1 Organizing Qualitative Data

2.1.2 Construct Bar Graphs (13 of 13)

[^0](P) Pearson

2.1 Organizing Qualitative Data
 2.1.3 Construct Pie Charts (2 of 3)

EXAMPLE Constructing a Pie Chart
The following data represent the marital status (in millions) of U.S. residents 18 years of age or older in 2006. Draw a pie chart of the data.

Marital Status	Frequency
Never married	55.3
Married	127.7
Widowed	13.9
Divorced	22.8

2.1 Organizing Qualitative Data
 2.1.3 Construct Pie Charts (3 o f 3)

EXAMPLE Constructing a Pie Chart
Marital Status, 2006

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
2.2 Organizing Quantitative Data: The Popular Displays
Learning Objectives

1. Organize discrete data in tables
2. Construct histograms of discrete data
3. Organize continuous data in tables
4. Construct histograms of continuous data
5. Draw stem-and-leaf plots
6. Draw dot plots
7. Identify the shape of a distribution
2.2 Organizing Quantitative Data: The Popular Displays
Introduction
The first step in summarizing quantitative data is to determine whether the data are discrete or continuous. If the data are discrete and there are relatively few different values of the variable, the categories of data (classes) will be the observations (as in qualitative data). If the data are discrete, but there are many different values of the variables, or if the data are continuous, the categories of data (the classes) must be created using intervals of numbers.

2.2 Organizing Quantitative Data: The Popular Displays 2.2.1 Organize Discrete Data in Tables (2 of 2)						
\# of Cars	Tally	Frequency	Relative Frequency			
0	IIII	4	$\frac{4}{50}=0.08$			
1	IIIIII IIIII III	13	$\frac{13}{50}=0.26$			
2	\|IIII IIIIII IIIII IIIII			22	0.44	
3	\|	III			7	0.14
4	III	3	0.06			
5	1		0.02			

[^1]
2.2 Organizing Quantitative Data: The Popular Displays
 2.2.2 Construct Histograms of Discrete Data (1 of 4)

A histogram is constructed by drawing rectangles for each class of data. The height of each rectangle is the frequency or relative frequency of the class. The width of each rectangle is the same and the rectangles touch each other.

2.2 Organizing Quantitative Data: The Popular Displays 2.2.2 Construct Histograms of Discrete Data (2 of 4)			
EXAMPLE Drawing a Histogram for Discrete Data			
Draw a frequency and relative frequency histogram for the "number of cars per household" data.			
\# of Cars	Frequency	Relative Frequency	
0	4	$\frac{4}{50}=0.08$	
1	13	$\frac{13}{50}=0.26$	
2	22	0.44	
3	7	0.14	
4	3	0.06	
5	1	0.02	
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved © Pearson			

2.2 Organizing Quantitative Data: The Popular
Displays
2.2.2 Construct Histograms of Discrete Data (3 of 4)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson
2.2 Organizing Quantitative Data: The Popular Displays
2.2.2 Construct Histograms of Discrete Data (4 of 4)

2.2 Organizing Quantitative Data: The Popular Displays
2.2.3 Organize Continuous Data in Tables (1 of 10)

Classes are categories into which data are grouped.

When a data set consists of a large number of different discrete data values or when a data set consists of continuous data, we must create classes by using intervals of numbers.

2.2 Organizing Quantitative Data: The Popular Displays
 2.2.3 Organize Continuous Data in Tables (2 of 10)

The following data represents the number of persons aged 25-64 who are currently work-disabled.

Age	Number (in thousands)
$25-34$	2,132
$35-44$	3,928
$45-54$	4,532
$55-64$	5,108

The lower class limit of a class is the smallest value within the class while the upper class limit of a class is the largest value within the class. The lower class limit of first class is 25 . The lower class limit of the second class is 35 . The upper class limit of the first class is 34 . The class width is the difference between consecutive lower class limits. The class width of the data given above is $35-25=10$.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved (P) Pearson

2.2 Organizing Quantitative Data: The Popular Displays
 2.2.3 Organize Continuous Data in Tables (3 of 10)

The following data represent the time between eruptions (in seconds) for a random sample of 45 eruptions at the Old Faithful Geyser in Wyoming. Construct a frequency and relative frequency distribution of the data.

728	678	723	735	703
730	722	708	714	713
726	716	736	719	672
698	702	738	725	711
721	703	735	699	695
722	718	695	702	731
700	703	706	733	726
720	723	711	696	695
729	699	714	700	718

Source: Ladonna Hansen, Park Curator
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(1) Pearson
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.3 Organize Continuous Data in Tables (4 of 10)
The smallest data value is 672 and the largest data value is 738.
We will create the classes so that the lower class limit of the first
class is 670 and the class width is 10 and obtain the following
classes: (we want nice values. start were you want, pick easy
number for width)

\[\)| $670-679$ |
| :--- |
| $680-689$ |
| $690-699$ |
| $700-709$ |
| $710-719$ |
| $720-729$ |
| $730-739$ |

\]

Copyright © 2017, 2013, 2010 Pearson Education, Inc. Al Rights Reserved

2.2 Organizing Quantitative Data: The Popular Displays
 2.2.3 Organize Continuous Data in Tables (5 of 10)

Time between Eruptions (seconds)	Tally	Frequency	Relative Frequency								
670-679	\|		2	$\frac{2}{45}=0.044$							
680-689		0	0								
690-699	\|							7	0.1556		
700-709	\|	III		I			9	0.2			
710-719	\|	II			I			9	0.2		
720-729	\|	I				I				11	0.2444
730-739	\|	I					7	0.1556			

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.3 Organize Continuous Data in Tables (6 of 10)
The choices of the lower class limit of the first class and the
class width were rather arbitrary.
There is not one correct frequency distribution for a particular
set of data.
However, some frequency distributions can better illustrate
patterns within the data than others. So constructing
frequency distributions is somewhat of an art form.
Use the distribution that seems to provide the best overall
summary of the data.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. Al Rights Reserved

2.2 Organizing Quantitative Data: The Popular Displays 2.2.3 Organize Continuous Data in Tables (7 of 10)						
Time between Eruptions (seconds)	Tally	Frequency	Relative Frequency			
670-674	1	1	$\frac{1}{45}=0.0222$			
675-679	।	1	0.0222			
680-684		0	0			
685-689		0	0			
690-694		0	0			
695-699	\|IIII			7	0.1556	
700-704	\|	IIII			7	0.1556
705-709	\\|	2	0.0444			
710-714	IIIII	5	0.1111			
715-719	IIII	4	0.0889			
720-724	\|	III		6	0.1333	
725-729	IIIII	5	0.1114			
730-734	III	3	0.0667			
$735-739$	IIII	4	0.0889			

2.2 Organizing Quantitative Data: The Popular
Displays
2.2.3 Organize Continuous Data in Tables (8 of 10)
Guidelines for Determining the Lower Class Limit of the
First Class and Class Width
Choosing the Lower Class Limit of the First Class
Choose the smallest observation in the data set or a convenient
number slightly lower than the smallest observation in the data set.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

2.2 Organizing Quantitative Data: The Popular Displays
 2.2.3 Organize Continuous Data in Tables (9 of 10)

Guidelines for Determining the Lower Class Limit of the First Class and Class Width
Determining the Class Width
Decide on the number of classes. Generally, there should be between 5 and 20 classes. The smaller the data set, the fewer classes you should have.

Determine the class width by computing
Class width $=\frac{\text { largest data value }- \text { smallest data value }}{\text { number of classes }}$
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.3 Organize Continuous Data in Tables (10 of 10)

Guidelines for Determining the Lower Class Limit of the First Class and Class Width

Round this value up to a convenient number.

2.2 Organizing Quantitative Data: The Popular

 Displays2.2.4 Construct Histograms of Continuous Data (2 of 3)

2.2 Organizing Quantitative Data: The Popular Displays
 2.2.4 Construct Histograms of Continuous Data (1 of 3)

EXAMPLE Constructing a Frequency and Relative Frequency Histogram for Continuous Data

Using class width of 10 :

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.5 Draw Stem-and-Leaf Plots (1 of 10)
A stem-and-leaf plot uses digits to the left of the rightmost
digit to form the stem. Each rightmost digit forms a leaf.
For example, a data value of 147 would have 14 as the stem
and 7 as the leaf.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. Al Rights Reserved

[^2]| 2.2 Organizing Quantitative Data: The Popular Displays
 2.2.5 Draw Stem-and-Leaf Plots (3 of 10) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State13 | Unemployment Rate | State | Unemployment Rate | State | Unemployment Rate |
| Alabama | 4.7 | Kentucky | 6.3 | North Dakota | 3.2 |
| Alaska | 6.8 | Louisiana | 3.8 | Ohio | 6.6 |
| Arizona | 4.8 | Maine | 5.3 | Oklahoma | 3.9 |
| Arkansas | 5.0 | Maryland | 4.0 | Oregon | 5.5 |
| California | 6.9 | Mass | 5.2 | Penn | 5.2 |
| Colorado | 5.1 | Michigan | 8.5 | Rhode Island | 7.5 |
| Conn | 5.4 | Minnesota | 5.3 | South Carolina | 6.2 |
| Delaware | 4.2 | Mississippi | 6.9 | South Dakota | 2.8 |
| Dist Col | 6.4 | Missouri | 5.7 | Tenn | 6.5 |
| Florida | 5.5 | Montana | 4.1 | Texas | 4.4 |
| Georgia | 5.7 | Nebraska | 3.3 | Utah | 3.2 |
| Hawaii | 3.8 | Nevada | 6.4 | Vermont | 4.7 |
| Idaho | 3.8 | New Hamp | 4.0 | Virginia | 4.0 |
| Illinois | 6.8 | New Jersey | 5.3 | Washington | 5.5 |
| Indiana | 5.8 | New Mexico | 3.9 | W. Virginia | 5.3 |
| lowa | 4.0 | New York | 5.3 | Wisconsin | 4.6 |
| Kansas | 4.3 | North Carolina | 6.0 | Wyoming | 3.2 |
| Copyright © 2011, 2013, 2010 Pearson Education, Inc. All Rights Reserved (P) Pearson | | | | | |

```
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.5 Draw Stem-and-Leaf Plots (5 of 10)
    2 8
    3888392922
    4782030104706
    50145783237335253
    689483940625
    75
    85
```


2.2 Organizing Quantitative Data: The Popular Displays
 2.2.5 Draw Stem-and-Leaf Plots (4 of 10)

We let the stem represent the integer portion of the number and the leaf will be the decimal portion. For example, the stem of Alabama (4.7) will be 4 and the leaf will be 7 .

```
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.5 Draw Stem-and-Leaf Plots (put in acceding order)
    2 8
    3 222388899
    4000012346778
    50122333334555778
    602344568899
    75
    8
```

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

```
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.5 Draw Stem-and-Leaf Plots (7 of 10)
Construction of a Stem-and-leaf Plot
Step }1\mathrm{ The stem of a data value will consist of the digits to the left
    of the right-most digit. The leaf of a data value will be the
    rightmost digit.
Step 2 Write the stems in a vertical column in increasing order.
    Draw a vertical line to the right of the stems.
Step 3 Write each leaf corresponding to the stems to the right of
    the vertical line.
Step 4 Within each stem, rearrange the leaves in ascending order,
    title the plot, and include a legend to indicate what the
    values represent.

\footnotetext{
2.2 Organizing Quantitative Data: The Popular Displays
2.2.5 Draw Stem-and-Leaf Plots (8 of 10)

When data appear rather bunched, we can use split stems.
The stem-and-leaf plot shown on the next slide reveals the distribution of the data better.

As with the determination of class intervals in the creation of frequency histograms, judgment plays a major role.

There is no such thing as the correct stem-and-leaf plot. However, some plots are better than others.
}
```

2.2 Organizing Quantitative Data: The Popular
Displays
2.2.5 Draw Stem-and-Leaf Plots (9 of 10)

```

A split stem-and-leaf plot:


\subsection*{2.2 Organizing Quantitative Data: The Popular Displays \\ 2.2.5 Draw Stem-and-Leaf Plots (10 of 10)}

Advantage of Stem-and-Leaf Diagrams over Histograms
Once a frequency distribution or histogram of continuous data is created, the raw data is lost (unless reported with the frequency distribution), however, the raw data can be retrieved from the stem-and-leaf plot.
2.2 Organizing Quantitative Data: The Popular
Displays
2.2.6 Draw Dot Plots (1 of 3)
A dot plot is drawn by placing each observation horizontally
in increasing order and placing a dot above the observation
each time it is observed.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
2.2 Organizing Quantitative Data: The Popular Displays
2.2.6 Draw Dot Plots (1 of 3)

A dot plot is drawn by placing each observation horizontally in increasing order and placing a dot above the observation each time it is observed.
2.2 Organizing Quantitative Data: The Popular Displays
2.2.6 Draw Dot Plots (2 of 3)

\section*{EXAMPLE Drawing a Dot Plot}
The following data represent the number of available cars in a household based on a random sample of 50 households. Draw a dot plot of the data
\begin{tabular}{llllllllll}
3 & 0 & 1 & 2 & 1 & 1 & 1 & 2 & 0 & 2 \\
4 & 2 & 2 & 2 & 1 & 2 & 2 & 0 & 2 & 4 \\
1 & 1 & 3 & 2 & 4 & 1 & 2 & 1 & 2 & 2 \\
3 & 3 & 2 & 1 & 2 & 2 & 0 & 3 & 2 & 2 \\
2 & 3 & 2 & 1 & 2 & 2 & 1 & 1 & 3 & 5 \\
\multicolumn{7}{l}{ Data based on results reported by the United States Bureau of the Census. }
\end{tabular}


\footnotetext{
2.2 Organizing Quantitative Data: The Popular Displays
2.2.7 Identify the Shape of a Distribution (1 of 4)

Uniform distribution - the frequency of each value of the variable is evenly spread out across the values of the variable
Bell-shaped distribution - the highest frequency occurs in the middle and frequencies tail off to the left and right of the middle
Skewed right - the tail to the right of the peak is longer than the tail to the left of the peak
Skewed left - the tail to the left of the peak is longer than the tail to the right of the peak.
}


\subsection*{2.2 Organizing Quantitative Data: The Popular Displays \\ 2.2.7 Identify the Shape of a Distribution (3 of 4)}

EXAMPLE Identifying the Shape of the Distribution Identify the shape of the following histogram which represents the time between eruptions at Old Faithful.


Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson

\subsection*{2.3 Additional Displays of Quantitative Data 2.3.1 Construct Frequency Polygons (1 of 4)}

A class midpoint is the sum of consecutive lower class limits divided by 2 .
A frequency polygon is a graph that uses points, connected by line segments, to represent the frequencies for the classes.

It is constructed by plotting a point above each class midpoint on a horizontal axis at a height equal to the frequency of the class. Next, line segments are drawn connecting consecutive points. Two additional line segments are drawn connecting each end of the graph with the horizontal axis.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson
2.3 Additional Displays of Quantitative Data
2.3.1 Construct Frequency Polygons (2 of 4)
\begin{tabular}{|c|l|l|l|}
\hline \begin{tabular}{c} 
Time between \\
Eruptions \\
(seconds)
\end{tabular} & \begin{tabular}{c} 
Class \\
Midpoint
\end{tabular} & Frequency & \begin{tabular}{c} 
Relative \\
Frequency
\end{tabular} \\
\hline \(670-679\) & 675 & 2 & 0.0444 \\
\hline \(680-689\) & 685 & 0 & 0 \\
\hline \(690-699\) & 695 & 7 & 0.1556 \\
\hline \(700-709\) & 705 & 9 & 0.2 \\
\hline \(710-719\) & 715 & 9 & 0.2 \\
\hline \(720-729\) & 725 & 11 & 0.2444 \\
\hline \(730-739\) & 735 & 7 & 0.1556 \\
\hline
\end{tabular}
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

\subsection*{2.3 Additional Displays of Quantitative Data 2.3.1 Construct Frequency Polygons (3 of 4)}

Frequency Polygon


\subsection*{2.3 Additional Displays of Quantitative Data \\ 2.3.1 Construct Frequency Polygons (4 of 4)}

Frequency Polygon


Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
2.3 Additional Displays of Quantitative Data 2.3.2 Create Cumulative Frequency and Relative Frequency Tables (1 of 2)

Cumulative adds up the frequencies
A cumulative frequency distribution displays the aggregate frequency of the category. In other words, for discrete data, it displays the total number of observations less than or equal to the category. For continuous data, it displays the total number of observations less than or equal to the upper class limit of a class.

A cumulative relative frequency distribution displays the proportion (or percentage) of observations less than or equal to the category for discrete data and the proportion (or percentage) of observations less than or equal to the upper class limit for continuous data.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson
2.3 Additional Displays of Quantitative Data
2.3.2 Create Cumulative Frequency and Relative Frequency Tables (2 of 2)
\begin{tabular}{|l|c|l|l|l|}
\hline \begin{tabular}{c} 
Time between \\
Eruptions \\
(seconds)
\end{tabular} & Frequency & \begin{tabular}{c} 
Relative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c} 
Cumulative \\
Relative \\
Frequency
\end{tabular} \\
\hline \(670-679\) & 2 & 0.0444 & 2 & 0.0444 \\
\hline \(680-689\) & 0 & 0 & 2 & 0.0444 \\
\hline \(690-699\) & 7 & 0.1556 & 9 & 0.2 \\
\hline \(700-709\) & 9 & 0.2 & 18 & 0.4 \\
\hline \(710-719\) & 9 & 0.2 & 27 & 0.6 \\
\hline \(720-729\) & 11 & 0.2444 & 38 & 0.8444 \\
\hline \(730-739\) & 7 & 0.1556 & 45 & 1 \\
\hline
\end{tabular}
2.3 Additional Displays of Quantitative Data
2.3.2 Construct Frequency and Relative Frequency Ogives (1 of 3 )

An ogive (read as "oh jive") is a graph that represents the cumulative frequency or cumulative relative frequency
... for the class. It is constructed by plotting points whose \(x\) coordinates are the upper class limits and whose \(y\) coordinates are the cumulative frequencies or cumulative relative frequencies of the class. Then line segments are drawn connecting consecutive points. An additional line segment is drawn connecting the first point to the horizontal axis at a location representing the upper limit of the class that would precede the first class (if it existed).
2.3 Additional Displays of Quantitative Data 2.3.2 Construct Frequency and Relative Frequency Ogives (2 of 3)

\section*{Frequency Ogive}

2.3 Additional Displays of Quantitative Data 2.3.2 Construct Frequency and Relative Frequency Ogives (3 of 3)

Relative Frequency Ogive

2.3 Additional Displays of Quantitative Data
2.3.4 Draw Time Series Graphs (1 of 3)
If the value of a variable is measured at different points in
time, the data are referred to as time series data.
A time-series plot is obtained by plotting the time
.. in which a variable is measured on the horizontal axis and
the corresponding value of the variable on the vertical axis.
Line segments are then drawn connecting the points.
coprighte © 2017, 2013, 2010 Pearson Education, Inc. All Rights Resesered


\subsection*{2.3 Additional Displays of Quantitative Data \\ 2.3.4 Draw Time Series Graphs (3 of 3) \\ }

\subsection*{2.4 Graphical Misrepresentations of Data Learning Objectives \\ 1. Describe what can make a graph misleading or deceptive}
2.4 Graphical Misrepresentations of Data
2.4.1 Describe What Can Make a Graph Misleading or
Deceptive (1 of 10)
Statistics: The only science that enables different experts using
the same figures to draw different conclusions. - Evan Esar

Coppright © 20017, 2013, 2010 Pearson Euccation, Inc. Al Rights Resesered

\footnotetext{
2.4 Graphical Misrepresentations of Data 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (2 of 10)
EXAMPLE Misrepresentation of Data
The data in the table represent the historical life expectancies (in years) of residents of the United States.
a) Construct a misleading time series graph that implies that life expectancies have risen sharply.
b) Construct a time series graph that is not misleading.
\begin{tabular}{cc}
\hline Year, \(\boldsymbol{x}\) & Life Expectancy, \(\boldsymbol{y}\) \\
\hline 1950 & 68.2 \\
1960 & 69.7 \\
1970 & 70.8 \\
1980 & 73.7 \\
1990 & 75.4 \\
2000 & 77.0 \\
\hline \multicolumn{2}{c}{ Source: National Center for Health Statistics } \\
10 Pearson Education, Inc. All Rights Reserved
\end{tabular}

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(P) Pearson
}


\section*{Graphs That Deceive}

Nonzero Axis: Graphs can be misleading because one or both of the axes begin at some value other than zero, so that differences are exaggerated.


Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
PPearson


Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved
(1) Pearson

\footnotetext{
2.4 Graphical Misrepresentations of Data
2.4.1 Describe What Can Make a Graph Misleading or Deceptive (4 of 10)

\section*{EXAMPLE Misrepresentation of Data}

The National Survey of Student Engagement is a survey that (among other things) asked first year students at liberal arts colleges how much time they spend preparing for class each week. The results from the 2007 survey are summarized on the next slide.
a) Construct a pie chart that exaggerates the percentage of students who spend between 6 and 10 hours preparing for class each week.
b) Construct a pie chart that is not misleading.
}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
2.4 Graphical Misrepresentations of Data \\
2.4.1 Describe What Can Make a Graph Misleading or Deceptive (5 of 10)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{EXAMPLE Misrepresentation of Data} \\
\hline Hours & Relative Frequency & \\
\hline 0 & 0 & \\
\hline 1-5 & 0.13 & \\
\hline 6-10 & 0.25 & \\
\hline 11-15 & 0.23 & \\
\hline 16-20 & 0.18 & \\
\hline 21-25 & 0.10 & \\
\hline 26-30 & 0.06 & \\
\hline 31-35 & 0.05 & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Source: \\
http://nsse.iub.edu/NSSE_2007_Annual_Report/docs/withhold/NSSE_2007_Annual_Report.pdf
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved P Pearson} \\
\hline
\end{tabular}

\subsection*{2.4 Graphical Misrepresentations of Data 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (6 of 10)}
(a) Number of Hours Per Week Students Spend Studying


\section*{Example - Income and Education} 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (7 of 10)
(b) Number of Hours Per Week Students Spend Studying


(P)Pearson


Misleading. Depicts one-dimensional data with three-dimensional boxes Last box is 64 times as large as first box, but income is only 4 times as large.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved (P) Pearson




\footnotetext{
2.4 Graphical Misrepresentations of Data
2.4.1 Describe What Can Make a Graph Misleading or
- Title and label the graphic axes clearly, providing explanations, if
- Minimize the amount of white space in the graph. Use the available space to let the data stand out. If scales are truncated, be sure to clearly indicate this to the reader.
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved \(\quad\) Peearson
}
2.4 Graphical Misrepresentations of Data
2.4.1 Describe What Can Make a Graph Misleading or Deceptive (9 of 10)

\section*{Guidelines for Constructing Good Graphics}
- Avoid clutter, such as excessive gridlines and unnecessary backgrounds or pictures. Don't distract the reader.
- Avoid three dimensions. Three-dimensional charts may look nice, but they distract the reader and often lead to misinterpretation of the graphic.
```

2.4 Graphical Misrepresentations of Data
2.4.1 Describe What Can Make a Graph Misleading or
Deceptive (10 of 10)
Guidelines for Constructing Good Graphics

- Do not use more than one design in the same graphic.
Sometimes graphs use a different design in one portion of the
graph to draw attention to that area. Don't try to force the reader
to any specific part of the graph. Let the data speak for
themselves.
- Avoid relative graphs that are devoid of data or scales.

[^0]: Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

[^1]: 2.2 Organizing Quantitative Data: The Popular Displays
 2.2.1 Organize Discrete Data in Tables (1 of 2)

 EXAMPLE Constructing Frequency and Relative Frequency Distribution from Discrete Data

 The following data represent the number of available cars in a household based on a random sample of 50 households. Construct a frequency and relative frequency distribution.

 | 3 | 0 | 1 | 2 | 1 | 1 | 1 | 2 | 0 | 2 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 4 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 4 |
 | 1 | 1 | 3 | 2 | 4 | 1 | 2 | 1 | 2 | 2 |
 | 3 | 3 | 2 | 1 | 2 | 2 | 0 | 3 | 2 | 2 |
 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 3 | 5 |

 Data based on results reported by the United States Bureau of the Census.

[^2]: 2.2 Organizing Quantitative Data: The Popular Displays
 2.2.5 Draw Stem-and-Leaf Plots (2 of 10)

 EXAMPLE Constructing a Stem-and-Leaf Plot
 An individual is considered to be unemployed if they do not have a job, but are actively seeking employment. The following data represent the unemployment rate in each of the fifty United States plus the District of Columbia in June, 2008.

