

Ways to Organize Data

- Tables
- Graphs
- Numerical Summaries (Chapter 3)

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearson

2.1 Organizing Qualitative Data 2.1.1 Organize Qualitative Data in Tables (3 of 8) EXAMPLE Organizing Qualitative Data into a Frequency

Distribution The data represent the color of M&Ms in a bag of plain M&Ms.

brown, brown, yellow, red, red, red, brown, orange, blue, green, blue, brown, yellow, yellow, brown, red, red, brown, brown, brown, green, blue, green, orange, orange, yellow, yellow, yellow, red, brown, red, brown, orange, green, red, brown, yellow, orange, red, green, yellow, yellow, brown, yellow, orange

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearson

2.1 Organizing Qualitative Data

2.1.1 Organize Qualitative Data in Tables (4 of 8)

Frequency table

Color	Tally	Frequency
Brown		12
Yellow		10
Red		9
Orange		6
Blue	III	3
Green		5

Frequency table

Color	Tally	Frequency	Relative Frequency	
Brown		12	$\frac{12}{45} \approx 0.2667$	
Yellow		10	0.2222	
Red		9	0.2	
Orange		6	0.1333	
Blue	III	3	0.0667	

Frequency

Pearsor

ency ta	ble		
Color	Tally	Frequency	Relative Frequency
Brown		12	$\frac{12}{45} \approx 0.2667$
Yellow		10	0.2222
Red		9	0.2
Orange	e	6	0.1333
Blue	Ш	3	0.0667
Green	1111	5	0.1111

2.1 Organizing Qualitative Data 2.1.2 Construct Bar Graphs (10 of 13)

EXAMPLE Comparing Two Data Sets

Copyright

The following data represent the marital status (in millions) of U.S. residents 18 years of age or older in 1990 and 2006. Draw a sideby-side relative frequency bar graph of the data.

Aarital Status	1990	2006
lever married	40.4	55.3
/arried	112.6	127.7
Vidowed	13.8	13.9
Divorced	15.1	22.8

2.1 Organizing Qualitative Data

proportional to the frequency of the category.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

A pie chart is a circle divided into sectors. Each sector

represents a category of data. The area of each sector is

2.1.3 Construct Pie Charts (1 of 3)

2.1 Organizing Qualitative Data 2.1.3 Construct Pie Charts (2 of 3)

EXAMPLE Constructing a Pie Chart

The following data represent the marital status (in millions) of U.S. residents 18 years of age or older in 2006. Draw a pie chart of the data.

Marital Status	Frequency
Never married	55.3
Married	127.7
Widowed	13.9
Divorced	22.8

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearson

Dis	plays		0					opula	ar
		Cons		•	• •	and F	Relativ	e Freq	uency
hou	sehold	based	on a r	andom	sampl	e of 50	house	ole cars cholds. bution.	
3	0	1	2	1	1	1	2	0	2
4	2			1	2	2	0	2	4
1	1	3	2	4	1	2	1	2	2
3	3	2	1	2	2	0	3	2	2
2	3	2	1	2	2	1	1	3	5
Data	based o	on result	s reporte	ed by the	e United	States E	Bureau c	of the Ce	nsus.
	© 2017, 2								_

2.2 Organizing Q Displays 2.2.2 Construct Hi		ata: The Popular screte Data (2 of 4
EXAMPLE Drawing	g a Histogram f	or Discrete Data
Draw a frequency and "number of cars per h		cy histogram for the
# of Cars	Frequency	Relative Frequency
# of Cars	Frequency 4	
		Frequency
0	4	$\frac{\mathbf{Frequency}}{\frac{4}{50}} = 0.08$

3

1

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

0.06

0.02

Pearson

4

5

2.2 Organizing Quantitative Data: The Popular Displays 2.2.3 Organize Continuous Data in Tables (3 of 10) The following data represent the time between eruptions (in seconds) for a random sample of 45 eruptions at the Old Faithful Geyser in Wyoming. Construct a frequency and relative frequency distribution of the data.

	728	678	723	735	703	
	730	722	708	714	713	
	726	716	736	719	672	
	698	702	738	725	711	
	721	703	735	699	695	
	722	718	695	702	731	
	700	703	706	733	726	
	720	723	711	696	695	
	729	699	714	700	718	
	Source: Lador	nna Hansen, I	Park Curator			
t © 2017	7, 2013, 2010 Pe	earson Education	n, Inc. All Rights	Reserved		Pearson

Copyright

2.2 Organizing Quantitative Data: The Popular
Displays
2.2.3 Organize Continuous Data in Tables (4 of 10)
The smallest data value is 672 and the largest data value is 738. We will create the classes so that the lower class limit of the first class is 670 and the class width is 10 and obtain the following classes: (we want nice values. start were you want, pick easy number for width)
670 - 679
680 - 689
690 - 699
700 - 709
710 - 719
720 - 729
730 - 739
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved Pearson

3 Organize Continuous Data in Tables (5 of 10)					
Time between Eruptions (seconds)	Tally	Frequency	Relative Frequency		
670-679	Ш	2	$\frac{2}{45} = 0.044$		
680 - 689		0	0		
690 - 699		7	0.1556		
700 - 709		9	0.2		
710 - 719		9	0.2		
720 - 729		11	0.2444		
730 - 739		7	0.1556		

2.2 Organizing Quantitative Data: The Popular Displays 2.2.3 Organize Continuous Data in Tables (6 of 10)	
The choices of the lower class limit of the first class and the class width were rather arbitrary.	
There is not one correct frequency distribution for a particular set of data.	
However, some frequency distributions can better illustrate patterns within the data than others. So constructing frequency distributions is somewhat of an art form.	
Use the distribution that seems to provide the best overall summary of the data.	
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved Pearson	

Jrganize Cont	inuous [Data in Table	ES (7 of 10)	
Time between Eruptions (seconds)	Tally	Frequency	Relative Frequency	
670 - 674	L	1	$\frac{1}{45} = 0.0222$	
675 - 679	Ē	1	0.0222	
680 - 684		0	0	
685 - 689		0	0	
690 - 694		0	0	
695 - 699		7	0.1556	
700 - 704	1111 11	7	0.1556	
705 - 709	1	2	0.0444	
710 - 714	1111	5	0.1111	
715 - 719	1111	4	0.0889	
720 - 724		6	0.1333	
725 - 729		5	0.1114	
730 - 734	III	3	0.0667	
735 - 739	111	4	0.0889	

2.2 Organizing Quantitative Data: The Popular Displays 2.2.3 Organize Continuous Data in Tables (8 of 10) Guidelines for Determining the Lower Class Limit of the First Class and Class Width Choosing the Lower Class Limit of the First Class Choose the smallest observation in the data set or a convenient number slightly lower than the smallest observation in the data set.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearson

2.2 Organizing Quantitative Data: The Popular Displays

2.2.3 Organize Continuous Data in Tables (9 of 10)

Guidelines for Determining the Lower Class Limit of the First Class and Class Width

Determining the Class Width

Decide on the number of classes. Generally, there should be between 5 and 20 classes. The smaller the data set, the fewer classes you should have.

Determine the class width by computing

Class width = largest data value – smallest data value number of classes

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pears

2.2 Organizing Quantitative Data: The Popular Displays

2.2.5 Draw Stem-and-Leaf Plots (2 of 10)

EXAMPLE Constructing a Stem-and-Leaf Plot

An individual is considered to be unemployed if they do not have a job, but are actively seeking employment. The following data represent the unemployment rate in each of the fifty United States plus the District of Columbia in June, 2008.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pears

Displays 2.2.5 Draw Stem-and-Leaf Plots (3 of 10)								
State13	Unemployment Rate	State	Unemployment Rate	State	Unemployment Ra			
Alabama	4.7	Kentucky	6.3	North Dakota	3.2			
Alaska	6.8	Louisiana	3.8	Ohio	6.6			
Arizona	4.8	Maine	5.3	Oklahoma	3.9			
Arkansas	5.0	Maryland	4.0	Oregon	5.5			
California	6.9	Mass	5.2	Penn	5.2			
Colorado	5.1	Michigan	8.5	Rhode Island	7.5			
Conn	5.4	Minnesota	5.3	South Carolina	6.2			
Delaware	4.2	Mississippi	6.9	South Dakota	2.8			
Dist Col	6.4	Missouri	5.7	Tenn	6.5			
Florida	5.5	Montana	4.1	Texas	4.4			
Georgia	5.7	Nebraska	3.3	Utah	3.2			
Hawaii	3.8	Nevada	6.4	Vermont	4.7			
Idaho	3.8	New Hamp	4.0	Virginia	4.0			
Illinois	6.8	New Jersey	5.3	Washington	5.5			
Indiana	5.8	New Mexico	3.9	W. Virginia	5.3			
lowa	4.0	New York	5.3	Wisconsin	4.6			
Kansas	4.3	North Carolina	6.0	Wyoming	3.2			

Display	ganizing Quantitative Data: The Popular ys raw Stem-and-Leaf Plots (5 of 10)					
2	8					
3	888392922					
4	782030104706					
5	0145783237335253					
6	89483940625					
7	5					
8	5					
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved Pearson						

2.2 Organizing Quantitative Data: The Popular Displays 2.2.5 Draw Stem-and-Leaf Plots (put in acceding order)						
2	8					
3	222388899					
4	000012346778					
5	0122333334555778					
6	02344568899					
7	5					
8	5					
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved Pearson						

2.2 Organizing Quantitative Data: The Popular Displays 2.2.5 Draw Stem-and-Leaf Plots (7 of 10)

Construction of a Stem-and-leaf Plot

- Step 1 The stem of a data value will consist of the digits to the left of the right-most digit. The leaf of a data value will be the rightmost digit.
- Step 2 Write the stems in a vertical column in increasing order. Draw a vertical line to the right of the stems.
- Step 3 Write each leaf corresponding to the stems to the right of the vertical line.
- Step 4 Within each stem, rearrange the leaves in ascending order, title the plot, and include a legend to indicate what the values represent.

Pearson

Copyright \circledast 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

2.2 Organizing Quantitative Data: The Popular Displays 2.2.5 Draw Stem-and-Leaf Plots (8 of 10)

2.2.5 Draw Stern-and-Lear Plots (8 of 10)

When data appear rather bunched, we can use **split stems**.

The stem-and-leaf plot shown on the next slide reveals the distribution of the data better.

As with the determination of class intervals in the creation of frequency histograms, judgment plays a major role.

There is no such thing as the correct stem-and-leaf plot. However, some plots are better than others.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pears

2.2 Organizing Quantitative Data: The Popular Displays 2.2.6 Draw Dot Plots (2 of 3)										
EXAMPLE Drawing a Dot Plot										
The following data represent the number of available cars in a household based on a random sample of 50 households. Draw a dot plot of the data.										
3	0	1	2	1	1	1	2	0	2	
4	2	2	2	1	2	2	0	2	4	
1	1	3	2	4	1	2	1	2	2	
3	3	2	1	2	2	0	3	2	2	
2	3	2	1	2	2	1	1	3	5	
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved										

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearso

2	2.3 Additional Displays of Quantitative Data 2.3.2 Create Cumulative Frequency and Relative Frequency Tables (2 of 2)							
Г		Frequency						
	Time between Eruptions (seconds)	Fi	requen	су	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency	
	Eruptions	Fi	requen	су			Relative	
	Eruptions (seconds)	Fi		cy	Frequency	Frequency	Relative Frequency	

680 - 689	0	0	2	0.0444
690 - 699	7	0.1556	9	0.2
700 - 709	9	0.2	(18) (0.4
710 - 719	9	0.2	27	0.6
720 - 729	11	0.2444	38	0.8444
730 - 739	7	0.1556	45	1
730 - 739	7	0.1556	45	1
oyright © 2017, 2013, 20:	0 Pearson Educatio	on, Inc. All Rights Res	erved	Pears

2.3.4 Draw Time Series Graph		·	
The data to the right shows –	Year	Closing Value	
5	1990	2753.2	
the closing prices of the Dow	1991	2633.66	
Jones Industrial Average for	1992	3168.83	
the years 1990 - 2007.	1993	3301.11	
lile years 1990 - 2007.	1994	3834.44	
	1995	5117.12	
	1996	6448.27	
	1997	7908.25	
	1998	9212.84	
	1999	9,181.43	
	2000	11,497.12	
	2001	10021.71	
	2002	8342.38	
	2003	10452.74	
	2004	10783.75	
	2005	10.783.01	
		.,	
		- /	
Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Righ_	2005 2006 2007	10,783.01 10,717.50 13264.82	•

2.4 Graphical Misrepresentations of Data 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (4 of 10)

EXAMPLE Misrepresentation of Data

The National Survey of Student Engagement is a survey that (among other things) asked first year students at liberal arts colleges how much time they spend preparing for class each week. The results from the 2007 survey are summarized on the next slide.

- a) Construct a pie chart that exaggerates the percentage of students who spend between 6 and 10 hours preparing for class each week.
- b) Construct a pie chart that is not misleading.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

Pearso

	e What Car	presentations of D Make a Graph Mislea	
EXAMPLE N	lisrepresen	tation of Data	
	Hours	Relative Frequency	_
	0	0	_
	1 - 5	0.13	
	6 - 10	0.25	
	11 - 15	0.23	
	16 - 20	0.18	
	21 - 25	0.10	
	26 - 30	0.06	
Source: http://nsse.iub.edu/l	31 - 35 NSSE 2007 Annu	0.05 al_Report/docs/withhold/NSSE_200	17 Annual Report.pdf
		tion, Inc. All Rights Reserved	Pearson

2.4 Graphical Misrepresentations of Data 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (8 of 10)

Guidelines for Constructing Good Graphics

- Title and label the graphic axes clearly, providing explanations, if needed. Include units of measurement and a data source when appropriate.
- Avoid distortion. Never lie about the data.
- Minimize the amount of white space in the graph. Use the available space to let the data stand out. If scales are truncated, be sure to clearly indicate this to the reader.

Pearson

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

```
    2.4 Graphical Misrepresentations of Data
    2.4.1 Describe What Can Make a Graph Misleading or Deceptive (9 of 10)
    Guidelines for Constructing Good Graphics
    Avoid clutter, such as excessive gridlines and unnecessary
```

backgrounds or pictures. Don't distract the reader.
Avoid three dimensions. Three-dimensional charts may look nice, but they distract the reader and often lead to

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved

misinterpretation of the graphic.

Pearso

2.4 Graphical Misrepresentations of Data 2.4.1 Describe What Can Make a Graph Misleading or Deceptive (10 of 10) **Guidelines for Constructing Good Graphics**

Do not use more than one design in the same graphic.
 Sometimes graphs use a different design in one portion of the graph to draw attention to that area. Don't try to force the reader to any specific part of the graph. Let the data speak for themselves.

Pearson

• Avoid relative graphs that are devoid of data or scales.

Copyright © 2017, 2013, 2010 Pearson Education, Inc. All Rights Reserved