

Thought Question
What cools off faster?
A. A grande-size cup of Starbucks coffee
B. A teaspoon of cappuccino in the same cup

Thought Question
What cools off faster?
A. A big terrestrial planet
B. A tiny terrestrial planet

Figure 9.3
=

Scientist on the Moon. Geologist (and later US senator) Harrison "Jack" Schmitt in front of a large boulder in the Littrow Valley at the edge of the lunar highlands. Note how black the sky is on the airless Moon. No stars are visible because the surface is brightly lit by the Sun, and the exposure therefore is not long enough to reveal stars.

Figure 9.7

三

Lunar Highlands. The old, heavily cratered lunar highlands make up 83% of the Moon's surface. (credit:Apollo II Crew, NASA)

Figure 9.9

Lunar Maria. About I7\% of the Moon's surface consists of the maria-flat plains of basaltic lava. This view of Mare Imbrium also shows numerous secondary craters and evidence of material ejected from the large crater Copernicus on the upper horizon. fter the limpact crater almost 100 kilomes (credit: NASA, Apollo 17) after the lava in Imbrium had already been deposited. (credit: NASA,Apollo I7)

Figure 9.11
Figure 9.12 $\xlongequal[\text { openstax" }]{\text { ב- }}$

Mare Orientale. The youngest of the large lunar impact basins is Orientale, formed 3.8 billion years ago. Its outer ring is about 1000 kilometers in diameter, roughly the distance between
York City and Detroit, Michigan. Unlike most of the other basins, Orientale has not been completely filled in with lava flows, so it retains its striking "bull's-eye" appearance. It is located on the edge of the Moon as seen from Earth. (credit: NASA)

Footprint on Moon Dust. Apollo photo of an astronaut's boot print in the lunar soil. (credit: NASA)

Figure 9.14

(a)

(b)

(c)

(d)

Stages in the Formation of an Impact Crater.
The impact occurs.
The projectile vaporizes and a shock wave spreads through the lunar rock.
Ejecta are thrown out of the crater.
(d) Most of the ejected material falls back to fill the crater, forming an ejecta

Figure 9.19
=
openstax

[^0]Figure 9.15 $\xlongequal[\text { openstax }]{\text { "— }}$

- Typical Impact Crater. King Crater on the far side of the Moon, a fairly recent lunar crater 75 kilometers in diameter, shows most of the features associated with large impact structures. (credit: NASA/JSC/Arizona State University)

Figure 9.10

Rock from a Lunar Mare. In this sample of basalt from the mare surface, you can see the holes left by gas bubbles, which are characteristic of rock formed from lava. All lunar rocks are chemically distinct from terrestrial rocks, a fact that has allowed scientists to identify a few lunar samples among the thousands of meteorites that reach Earth. (credit: modification of work by NASA)

9.4 THE ORIGIN OF THE MOON

-Our Moon is to large to be captured
-We can rule out that they formed simultaneously or they would have accreted from planetesimals of similar composition and density

Result from giant impact between Earth and huge planetesimal

Giant impact blasted Earth's outer layers into orbit

- Then accreted into the Moon

Giant Impact

Figure 9.22 =

Mercury's Topography. The topography of Mercury's northern hemisphere is mapped in great detail from MESSENGER data. The lowest regions are shown in purple and blue, and highest regions shown here is roughly 10 kilometers. The permanently shadowed low-lying craters near the north pole contain radar-bright water ice.

Cratering of Mercury

The Caloris Basin is the largest impact crater on Mercury.

Region opposite the Caloris Basin is jumbled from seismic energy of impact.

Figure 9.23

Caloris Basin. This partially flooded impact basin is the largest known structural feature
on Mercury. The smooth plains in the interior of the basin have an area of almost two million square kilometers. Compare this photo with Figure 9.1 I, the Orientale Basin on the Moon.

[^0]: - Cratering Rates over Time. The number of craters being made on the Moon's surface has varied with time over the past 4.3 billion years.

