

Sun

, Over 99.8% of solar system's mass
, $98 \% \mathrm{H} / \mathrm{He}$ gas (plasma), 2% other elements

- You can fit 108 Earths across

Two Major Planet Types

Mercury

[^0]- Desolate, cratered; long, tall, steep cliffs
*-Very hot and very cold: $800^{\circ} \mathrm{F}$ (day), $-280^{\circ} \mathrm{F}$ (night) 2015 Pearson

Earth
Earth and Moon to scale

An oasis of life

- The only surface liquid water in the solar system
- A surprisingly large moon

Figure 7.5

- The Four Giant Planets. This montage shows the four giant planets: Jupiter, Saturn, Uranus, and Neptune. Below them, Earth is shown to scale. (credit: modification of work by NASA, Solar System Exploration)

Figure 7.13

- Comet Shoemaker-Levy 9. In this image of Comet Shoemaker-Levy 9 taken on May 17, 1994, by NASA's Hubble Space Telescope, you can see about 20 icy fragments into which the comet broke.The comet was approximately 660 million kilometers from Earth, heading on a collision course with Jupiter. (credit: modification of work by NASA, ESA, H. Weaver (STScl), E. Smith (STScl))

Figure 7.14 openstax

- Jupiter with Huge Dust Clouds. The Hubble Space Telescope took this sequence of images of Jupiter in summer 1994, when fragments of Comet Shoemaker-Levy 9 collided with the giant planet. Here we see the site hit by fragment G , from five minutes to five days with the giant planet. Here we see the several of the dust clouds generated by the collisions became larger than Earth. (credit: modification of work by H. Hammel, NASA)

Jupiter's moons can be as interesting as planets themselves, especially Jupiter's four Galiean moons.
lo: (young surface) Active volcanoes
Europa: (smooth surface) Possible subsurface ocean
Ganymede: Largest moon in solar system
Callisto: (old surface) A large, cratered "ice ball"
© 2015 Pearson

Figure 7.12
$\underset{\text { openstax }}{\text { ב- }}$

Ganymede. This view of Jupiter's moon Ganymede was taken in June 1996 by the Galileo spacecraft. The brownish gray color of the surface indicates a dusty mixture of rocky material and ice. The bright spots are places where recent impacts have uncovered fresh ice from underneath. (credit: modification of work by NASA/JPL)

Smaller Members of the Solar System
Pluto and Other Dwarf Planets

- Much smaller than other planets
- Icy, comet-like composition
- Pluto's moon Charon is similar in size to Pluto © 2015 Pearson
Education, Inc

Figure 7.6
=

Pluto Close-up. This intriguing image from the New Horizons spacecraft, taken when it flew by the dwarf planet in July 2015, shows some of its complex surface features. The rounded white area is temporarily being called the Spuns Hopkins University Applied Physics spacecraft. (credit: modification of work by NASA/Johns Hopkins University Applied Physic
Laboratory/Southwest Research Institute)

Figure 7.8

- Asteroid Eros. This small Earth-crossing asteroid image was taken by the NEARShoemaker spacecraft from an altitude of about 100 kilometers. This view of the heavily cratered surface is about 10 kilometers wide. The spacecraft orbited Eros for a year before landing gently on its surface. (credit: modification of work by NASAJHUAPL)

Figure 7.9 openstax

Comet Churyumov-Gerasimenko (67P). This image shows Comet ChuryumovGerasimenko, also known as 67P, near its closest approach to the Sun in 2015, as seen from the Rosetta spacecraft. Note the jets of gas escaping from the solid surface. (credit: (http://creativecommons.org/licenses/by-sa/3.0/igo/))

A Scale Model of the Solar System

Figure 7.16

Radioactive Decay. This graph shows (in pink) the amount of a radioactive sample that remains after
everal half-lives have passed. After one half-life, half the sample is left; after two half-lives, one half of the remainder (or one quarter) is left; and after three half-lives, one half of that (or one eighth) is left. Note that, in reality, the decay of radioactive elements in a rock sample would not cause any visible change in the appearance of the rock; the splashes of color are shown here for conceptual purposes only.

Dating the Solar System

Age dating of meteorites that are unchanged since they condensed and accreted tells us that the solar system is about 4.6 billion years old.

Dating the Solar System

- Radiometric dating tells us that the oldest moon rocks are 4.4 billion years old.
- The oldest meteorites are 4.55 billion years old.
- Planets probably formed 4.5 billion years ago.

Accretion of Planetesimals

- Many smaller objects collected into just a few large ones.

Links	Reading
- VIDEO Origin of SS 13 min - VIDEO scale SS 7 min	- 7.1
	- 7.2
	- 7.3
	- 7.4

[^0]: - Made of metal and rock; large iron core

