

ASTRONOMY
Chapter 3 ORBITS AND GRAVITY
PowerPoint Image Slideshow

Kepler's three laws of planetary motion?

- Kepler's First Law: Each planet moves around the Sun in an orbit that is an ellipse, with the Sun at one focus of the ellipse.

- Kepler's Second Law: As a planet moves around its orbit, it sweeps out equal areas in equal times.

A planet travels faster when it is nearer to the Sun

Definitions

- Speed: rate at which an object moves
, Velocity: Speed and direction
, Acceleration: Change in velocity
- Force changes momentum, which generally means an acceleration (change in velocity).
- Momentum $=$ mass x velocity
- Angular momentum: The rotational momentum of a spinning or orbiting object $=$ mass x velocity x raduis
, Mass: quantity of matter
| Weight: force acting on mass = mass x gravity
- Density = mass / volume

Kepler's Third Law: The square of a planet's orbital period is directly proportional to the cube of its orbit.

$$
p^{2}=a^{3}
$$

$p=$ orbital period in years
$a=$ average distance from Sun in AU

More distant planets orbit the Sun at slower average speeds

3.3 NEWTON'S UNIVERSAL LAW OF GRAVITATION
 The Universal Law of Gravitation:

1. Every mass attracts every other mass.
2. Attraction is directly proportional to the product of their masses.
3. Attraction is inversely proportional to the square of the distance between their centers.
of the gravitational a ttraction between the two objects.
 Education, Inc.

Newton's version of Kepler's third law
3. Newton generalized Kepler's third law:
which allows us to calculate the mass of distant objects.

1. Kepler's first two laws apply to all orbiting objects, not just planets.

- 2. Ellipses are not the only orbital paths. Orbits can be:
, bound (ellipses
- unbound
, parabola
, hyperbola

$$
p^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3}
$$

$p=$ orbital period
$a=$ average orbital distance (between centers)
$\left(M_{1}+M_{2}\right)=$ sum of object masses

