

ASTRONOMY
Chapter 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY PowerPoint Image Slideshow

How to locate an object

- altitude is position above horizon
- direction (azimuth) degrees clockwise from due N along horizon

Wandering stars

- The word "planet," in fact, means "wanderer" in ancient Greek.
- The planets that are easily visible to the unaided eye
- Mercury, Venus, Mars, Jupiter, Saturn.
- With the Sun and Moon the planets, make up all seven moving objects in the sky.
- Hence, 7 days in a week

2.2 ANCIENT ASTRONOMY

- Astronomy is the oldest of the sciences.

Why study it?

- Inherent curiosity
- Keeping track of time and seasons
- for practical purposes, including agriculture
- for religious and ceremonial purposes
- In aiding navigation

France: Cave paintings from 18,000 B.c. may suggest knowledge of lunar phases (29 dots).

Ancient views of the universe

Greeks geocentric model

Aristarchus (c. 310-230 BC), did suggested that Earth was moving around the Sun however, most of the ancient Greek scholars rejected this idea
, Heavens must be "perfect"-objects move on perfect spheres or in perfect circles.
varth at the center of the universe

Tycho Brahe (1546-160I)

- Brahe compiled the most accurate (1 arcminute) naked eye measurements ever made of planetary positions.
- He still could not detect stellar parallax, and thus still thought Earth must be at the center of the solar system (but recognized that other planets go around the Sun).
- He hired Kepler, who used Tycho's observations to discover the truth about planetary motion.

Johannes Kepler (I57I-I63O)

Kepler first tried to match Tycho's observations with circular orbits.

- But an 8-arcminute discrepancy led him eventually to ellipses.
"If I had believed that we could ignore these eight minutes [of arc], I would have patched up my hypothesis accordingly. But, since it was not permissible to ignore, those eight minutes pointed the road to a complete reformation in astronomy."
© 2015 Pearson Education, Inc

Overcoming the first objection (nature of motion):
How did Galileo solidify the Copernican revolution?

- Galileo overcame three major objections to the

Galileo's experiments showed that objects in air would stay with a moving Earth.

1. Earth could not be moving because objects in air would be left behind.
2. Noncircular orbits are not "perfect" as heavens should be.
3. If Earth were really orbiting Sun, we'd detect stellar parallax.

- Aristotle thought that all objects naturally come to rest.
- Galileo showed that objects will stay in motion unless a force acts to slow them down (Newton's first law of motion).

```
Overcoming the second objection
    (heavenly perfection):
- Using his telescope, Galileo saw:
    , Sunspots on the Sun ("imperfections")
    - Mountains and valleys on the Moon (proving it is not a
        perfect sphere)
    - 4 moons orbiting Jupiter (proving not all objects orbit
        earth)
- Observed phases of Venus (proving it orbits the Sun not Earth)

Overcoming the third objection (parallax):
- Tycho thought he had measured stellar distances, so lack of parallax seemed to rule out an orbiting Earth.
- Galileo showed stars must be much farther than Tycho thought-in part by using his telescope to see that the Milky Way has countless individual stars
- If stars were much farther away, then lack of detectable parallax was no longer so troubling.
```

