

Variety of Stars. Stars come in a variety of sizes, masses, temperatures, and luminositie This image shows part of a cluster of stars in the Small Magellanic Cloud (catalog number Because the stars in this cluster are all at about the same distance from us, the differences in apparent brightness correspond to differences in luminosity; differences in temperature account for the differences in color. The various colors and luminosities of these stars provide clues about their life stories.

Figure 18.2

Dwarf Simulation. This computer simulation shows the stars in our neighborhood as they would be seen from a distance of 30 light-years away. The Sun is in the center. All the brown dwarfs are circled; those found earlier are circled in blue, the ones found recently with the WISE infrared telescope in space (whose scientists put this diagram together) are circled in red. The common M stars, which are red and faint, are made to look brighter that
they really would be so that you can see them in the simulation. Note that luminous hot stars like our Sun are very rare. (credit: modification of work by NASA/ JPL-Caltech)

Types of Binary Star Systems

- Visual binary
- Eclipsing binary
- Spectroscopic binary

About half of all stars are in binary systems.

Eclipsing Binary

Spectroscopic Binary

We determine the orbit by measuring Doppler shifts.
Figure 18.6

Motions of Two Stars Orbiting Each Other and What the Spectrum Shows. We see changes in velocity because when one star is moving toward Earth, the other is moving away; half a cycle later, the situation is reversed. Doppler shifts cause the spectral lines to move back and forth. In diagrams I and 3, lines from both stars can be seen well separated from each other. When the two stars are moving perpendicular to our line of sight (that is, they are not moving either toward or away from us), the two lines are exactly superimposed, and so in diagrams 2 and 4 , we see only a single spectral line.

Figure 18.7

Radial Velocities in a Spectroscopic Binary System. These curves plot the radial velocities of two stars in a spectroscopic binary system, showing how the stars alternately approach and recede from Earth. Note that positive velocity means the star is moving away from us relative to the center of mass of the system, which in this case is 40 kilometers per second. Negative velocity means the star is moving toward us relative to the center of mass. The positions on the curve corresponding to the illustrations in Figure 18.6 are marked with the diagram number (1-4).

Figure 18.5
openstax
High-mass

- Binary Star System. In a binary star system, both stars orbit their center of mass. The image shows the relative positions of two, different-mass stars from their center of mass, similar to how two masses would have to be located on a seesaw in order to keep it level.The star with the higher mass will be found closer to the center of mass, while the star with the lower mass will be farthe from it.

	We measure mass using gravity.
	Direct mass measurements are possible only for stars in binary star systems.
	$p^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3}$
Isaac Newton	$p=$ period
	$a=$ average separation
,	© 2015 Pearson Education, Inc.

Figure 18.8

Brown Dwarfs in Orion. These images, taken with the Hubble Space Telescope, show the Brown Dwarfs in Orion. These images, taken with the Hubber Space Telescope,
region surrounding the Trapezium star cluster inside the star-forming region called the region surroun
Orion Nebula.
(a) No brown dwarfs are seen in the visible light image, both because they put out very little light in the visible and because they are hidden within the clouds of dust in this region.
(b) This image was taken in infrared light, which can make its way to us through the dust.The faintest objects in this image are brown dwarfs with masses between 13 and 80 times the mass of Jupiter.

Figure 18.9

Mass-Luminosity Relation. The plotted points show the masses and luminosities of stars. The three points lying below the sequence of points are all white dwarf stars.

Need two out of three observables to measure mass:

1. Orbital period (p)
2. Orbital separation (a or $r=$ radius)
3. Orbital velocity (v)

For circular orbits, $v=2 \pi r / p$

© 2015 Pearson

Stellar Properties Review

Luminosity: from brightness and distance

$$
\left(0.08 M_{\text {sun }}\right) 10^{-4} L_{\text {sun }}-10^{6} L_{\text {sun }}\left(100 M_{\text {sun }}\right)
$$

Temperature: from color and spectral type

$$
\left(0.08 \mathrm{M}_{\text {sun }}\right) 3000 \mathrm{~K}-50,000 \mathrm{~K}\left(100 \mathrm{M}_{\text {sun }}\right)
$$

Mass: from period (p) and average separation (a) of binary-star orbit

$$
0.08 M_{\text {Sun }}-100 M_{\text {Sun }}
$$

Figure 18.14

H-R Diagram for a Selected Sample of Stars. In such diagrams, luminosity
is plotted along the vertical axis. Along the horizontal axis, we can plot either
temperature or spectral type (also sometimes called spectral class). Several of the brightest stars are identified by name. Most stars fall on the main sequence.

Figure 18.15

Schematic H-R Diagram for Many Stars. Ninety percent of all stars on such a diagram fall along a narrow band called the main sequence. A minority of stars are found in the upper right; they are both cool (and hence red) and bright, and must be giants. Some stars fall in the lower left of the diagram; they are both hot and dim, and must be white dwarfs.

Mass measurements of main-sequence stars show that the hot, blue stars are much more massive and have higher luminosity than the cool, red ones.

Off the Main Sequence

- Stellar properties depend on both mass and age: those that have finished fusing H to He in their cores are no longer on the main sequence.
- All stars become larger and redder after exhausting their core hydrogen: giants and supergiants.
- Most stars end up small and white after fusion has ceased: white dwarfs.

Figure 18.16 penstax"

The Sun and a Supergiant. Here you see how small the Sun looks in comparison to one of the largest known stars:VY Canis Majoris, a supergiant.

Giants and supergiants are far larger than main-sequence stars and white dwarfs. © 2015 Pearson
Education, Inc.

Stellar Properties Review

Luminosity: from brightness and distance
$\left(0.08 M_{\text {sun }}\right) 10^{-4} L_{\text {Sun }}-10^{6} L_{\text {sun }}\left(100 M_{\text {sun }}\right)$
Temperature: from color and spectral type

$$
\left(0.08 \mathrm{M}_{\text {Sun }}\right) 3000 \mathrm{~K}-50,000 \mathrm{~K}\left(100 \mathrm{M}_{\text {sun }}\right)
$$

Mass: from period (p) and average separation (a) of binary-star orbit

