

Sizes of Moons

- Small moons (< 300 km)
- No geological activity
- Medium-sized moons (300 -l500 km)
- Geological activity in past
- Large moons (> 1500 km)
- Ongoing geological activity

12.2 THE GALILEAN MOONS OF JUPITER
 © 2015 Pearson
Education, Inc.

Callisto

Ganymede

Europa

(b)
(a)
h) This global view of Ganymede, the largest moon in the solar system, was taken by Voyager 2 . The colors are enhanced to make spotting differences easier. Darker places are older, more heavily cratered regions; the lighter areas are younger (the reverse of our Moon). The brightest spots are sites of geologically recent impacts.
) This close-up of Nicholson Regio on Ganymede shows an old impact crater (on the lower left-hand side) that has been split and pulled apart by tectonic forces. Against Ganymede's dark terrain, a line of grooves and ridges appears to cut through the crater, deforming its circular shape.

Figure 12.4

Waterworld

- Ice on the surface
- Liquid ocean under the surface
- Tidal heating.

[^0]Tidal stresses crack Europa's surface ice

Figure 12.5

(a)

(b)

- Evidence for an Ocean on Europa.
(a) A close-up of an area called Conamara Chaos is shown here with enhanced color.This view is 70 kilometers wide in its long dimension. It appears that Conamara is a region where Europa's icy crust is (or recently was) relatively thin and there is easier access to the en here look similar to views of floating sea-ice and icebergs in Earth's Arctic Ocean
(b) In this high-resolution view, the ice is wrinkled and crisscrossed by long ridges. Where these ridges intersect, we can see which ones are older and which younger; the younger ones cross over the older ones. The ridges are a natural result of the flexing of the moon.]

Figure 12.7

=

Two Sides of lo. This composite image shows both sides of the volcanically active moon lo. The orange deposits are sulfur snow; the white is sulfur dioxide. (Carl Sagan once quipped The orange deposits are sulfur snow; the white is sulfur dioxide. (Carl Sagan once quipped
that lo looks as if it desperately needs a shot of penicillin.) (credit: modification of work by NASAJPLIUSGS)

Figure 12.8

- Volcanic Eruptions on lo. This composite image from NASA's Galileo spacecraft shows close-ups (the two inset photos) of two separate volcanic eruptions on Jupiter's volcanic close-ups (the two inset photos) of two separate volcanic eruptions on Jupiter's volcanic
moon, lo. In the upper inset image, you can see a close up of a bluish plume rising about 140 kilometers above the surface of the volcano. In the lower inset image is the Prometheus plume, rising about 75 kilometers from lo's surface. The Prometheus plume is named for the Greek god of fire. (credit: modification of work by NASAJJPL)

Figure 12.9

April 1997

September 1997

July 1999

Volcanic Changes on 10. These three images were taken of the same 1700-kilometersquare region of lo in April 1997, September 1997, and July 1999. The dark volcanic center called Pillan Patera experienced a huge eruption, producing a dark deposit some 400 kilometers across (seen as the grey area in the upper center of the middle image). In the right image, however, some of the new dark deposit is already being covered by reddish material from the voicano Pele.Also, a small unnamed volcano to the right of Pillan has erupted since 1997, and some of its dark deposit and a yellow ring around it are visible on the right image (to the right of the grey spot). The color range is exaggerated in these images.

Figure 12.11

Three Icy Moons. These Galileo images compare the surfaces of Europa, Ganymede, and Callisto at the same resolution. Note that the number of craters (and thus the age of the Callisto at the same resolution. Note that the number of craters (and thus the age of the is one of those where the system of cracks and ridges resembles a freeway system. (credit: modification of work by NASA/JPL/DLR)

Figure 12.13

- Views of the Surface ofTitan.
- The left image shows the views of Titan from the descent camera, in a flattened projection, at different altitudes.
, The right image, taken after landing, shows a boulder-strewn surface illuminated by faint reddish sunlight. The boulders are composed of water ice.

Titan's "Lakes"

- Radar imaging of Titan's surface has revealed dark, smooth regions that may be lakes of liquid methane.

Figure 12.14

(b)
(a) This Cassini image from a September 2006 flyby shows the liquid lakes on Titan. Their This Cassini image from a September 2006 flyby shows the liquid lakes on Titan. Their
composition is most likely a combination of methane and ethane. (Since this is a radar image, the colors are artificially added. The dark blue areas are the smooth surfaces of the liquid lakes, and yellow is the rougher solid terrain around them.)
) This mosaic of Titan's surface from the Cassini-Huygens mission shows in detail a high ridge
This mosaic of Titan's surface from the Cassini-Huygens mission shows in detail a high ridge
area and many narrow, sinuous erosion channels that appear to be part of a widespread area and many narrow, sinuous erosion channels that

Ongoing Activity on Enceladus

Medium Moons of Uranus

Neptune's Moon Triton

This close-up shows lava-filled impact the lava was water or slush rather than Triton's southern hemisphere as seen by Voyager 2. molten rock.

Neptune's Moon Triton. This mosaic of Voyager 2 images of Triton shows a wide range of surface features. The pinkish area at the bottom is Triton's large southern polar cap. The surface features. The pinkish area at the bottom is Triton's large southern polar cap. The
south pole of Triton faces the Sun here, and the slight heating effect is driving some of the material northward, where it is colder. (credit: modification of work by NASAJJPL/USGS)

- Similar to Pluto, but larger
- Evidence for past geological activity

Figure 12.15

Figure 12.16

openstax

- Triton's Geysers. This close-up view shows some of the geysers on Neptune's moon Triton, with the long trains of dust pointing to the lower right in this picture.

Why are jovian planet moons more geologically active than small rocky planets?

- © 2015 Pearson

Education, Inc.

Why are jovian planet moons more geologically active than small rocky planets?

- Rock melts at higher temperatures.
- Only large rocky planets have enough heat for activity.
- Ice melts at lower temperatures.
- Tidal heating can melt internal ice, driving activity. © 2015 Pearson
Education, Inc.

12.4 PLUTO AND CHARON

- There are many icy objects like Pluto on elliptical, inclined orbits beyond Neptune.
- The largest ones are comparable in size to Earth's Moon.

Figure 12.17

Comparison of the Sizes of Pluto and Its Moon Charon with Earth. This graphic vividly shows how tiny Pluto is relative to a terrestrial planet like Earth. That is the primary vividly shows how tiny Pluto is relative to a terrestrial planet like Earth. That is the primary
justification for putting Pluto in the class of dwarf planets rather than terrestrial planets. (credit: modification of work by NASA)

Pluto's Motion. Portions of the two photographs by which Clyde Tombaugh discovered Pluto in 1930.The left one was taken on January 23 and the right on January 29 . Note that Muto, indicated by an arrow, has moved among the stars during those six nights. If we hadn't put an arrow next to it, though, you probably would never have spo
(credit: modification of work by the Lowell Observatory Archives)

Pluto's Orbit

- Pluto's orbit is tilted and significantly elliptical.
- Neptune orbits three times during the time Pluto orbits twice-resonance prevents a collision.
$\rightarrow-\begin{aligned} & \text { © } 2015 \text { Pearson } \\ & \text { Education, Inc. }\end{aligned}$

Kuiper Belt Objects

Is Pluto a planet?

- In 2006, the International Astronomical Union decided to call Pluto and objects like it "dwarf planets."

What is Pluto like?

- Its largest moon, Charon, is nearly as large as Pluto itself (probably made by a major impact).
- Pluto is very cold (40 K).
- Pluto has a thin nitrogen atmosphere that refreezes onto the surface as Pluto's orbit takes it farther from the Sun.
- 2015 Pearson Education, Inc.

Figure 12.21

openstax

Global Color Image of Pluto. This New Horizons image clearly shows the variety of terrains on Pluto. The dark area in the lower left is covered with impact craters, while the large light area in the center and lower right is a flat basin devoid of craters. The colors you see are somewhat University Applied Physics Laboratory/Southwest Research Institute)

Figure 12.22

=

Diversity of Terrain on Pluto. This enhanced color view of a strip of Pluto's surface about 80 kilometers long shows a variety of different surface features. From left to right, we frst cross a region of badlands with some craters showing, and then move across a wide range of mountains made of water ice and coated with the redder material we saw in the previous image. Then, at right, we arrive at the "shoreline" of the great sea of frozen nitrogen that the mission scientists have nicknamed the "Sputnik Plains." This nitrogen sea is divided into mysterious cells or segments that are many kilometers across.

Figure 12.23

=——"

(a)

(b)

Diversity of errains on Pluto.

In this photo, about 250 kilometers across, we can see many different kinds of terrain. At the bottom are older, cratered highlands; a V-shaped region of hills without cratering points toward the bottom of the image. Surrounding the V-shaped dark region is the smooth brighter frozen nitrogen plain, acting as glaciers on Earth do. Some isolated mountains, made of frozen water ice, are floating in the nitrogen near the top of the picture.
(b) This scene is about 390 kilometers across. The rounded mountains, quite different from those we know on Earth, are named Tartarus Dorsa.The patterns, made of repeating ridges with the more reddish terrain between them, are not yet understood.

Figure 12.24

(a)

(b)

- Pluto's Large Moon Charon.
(a) In this New Horizons image, the color has been enhanced to bring out the color of the moon's strange red polar cap. Charon has a diameter of 1214 kilometers, and the resolution of this image is 3 kilometers.
(b) Here we see the moon from a slightly different angle, in true color. The inset shows an area about 390 kilometers from top to bottom. Near the top left is an intriguing feature-what appears to be a mountain in the middle of a depression or moat.
12.5 PLANETARY RINGS

Figure 12.25

Four Ring Systems. This diagram shows the locations of the ring systems of the four giant planets. The left axis represents the planet's surface. The dotted vertical line is the limit inside which gravitational forces can break up moons (each planet's system is drawn to a different scale, so that this stability limit lines up for planet's system is drawn to a different scale, so that this stability limit lines up for
all four of them). The black dots are the inner moons of each planet on the same scale as its rings. Notice that only really small moons survive inside the stability scale
limit.
Figure 12.26
, Saturn's Rings as Seen from Above and Below.

| (a) The view from above is illuminated by direct sunlight. |
| :--- | :--- | :--- |
| (b) The illumination seen from below is sunlight that has diffused through gaps in the |
| rings. |

What are Saturn's rings like?

Gap Moons

Figure 12.31

Rings of Neptune. This long exposure of Neptune's rings was photographed by Voyager 2. Note the two denser regions of the outer ring. (credit: modification of work by NASA/JPL)

Rings of Uranus. The Voyager team had to expose this image for a long time to get a glimpse of Uranus' narrow dark rings. You can see the grainy structure of "noise" in the electronics of the camera in the picture background. (credit: modification of work by NASA/JPL)

openstax

[^0]: © 2015 Pearson

