

4.1 Describing Motion: Examples from Everyday Life

Our goals for learning:
$>$ How do we describe motion?
> How is mass different from weight?

Acceleration of Gravity

\square All falling objects accelerate at the same rate (not counting friction of air resistance).
-On Earth, $g \approx 10 \mathrm{~m} / \mathrm{s}^{2}:$ speed increases $10 \mathrm{~m} / \mathrm{s}$ with each second of falling.

Momentum and Force

\square Momentum = mass x velocity.
\square A net force changes momentum, which generally means an acceleration (change in velocity).

* An object must accelerate whenever a net force acts on it.

The rotational momentum of a spinning or orbiting object is known as angular momentum.

Thought Question

Is a net force acting on each of the following? (Answer yes or no.)
\square A car coming to a stop
$\square \mathrm{A}$ bus speeding up
\square A bicycle going around a curve
-A moon orbiting Jupiter

2015 Peasson Education, lnc.

>How is mass different from weight?

-Mass-the amount of matter in an object
-Weight-the force that acts on an object

Recap

- Speed = distance/time
- Speed and direction => velocity
- Change in velocity => acceleration
- Momentum = mass x velocity
- Force causes change in momentum, producing acceleration.
- Mass = quantity of matter
- Weight = force acting on mass
$=$ mass \times gravity

4.2 Newton's Laws of Motion

Our goals for learning:
> How did Newton change our view of the universe?
$>$ What are Newton's three laws of motion?
>How did Newton change our view of the universe?

Sir Isaac Newton (1642-1727)
\square He realized the same physical laws that operate on Earth also operate in the heavens: \Rightarrow one universe
\square He discovered laws of motion and gravity.
\square Much more:
Experiments with light; first reflecting telescope, calculus...

4.3 Conservation Laws in Astronomy

Our goals for learning:
> What keeps a planet rotating and orbiting the Sun?

- Where do objects get their energy?

1. Conservation of Momentum

-The total momentum of interacting objects cannot change unless an external force is acting on them.
2. Conservation of Angular Momentum
angular momentum $=$ mass x velocity x radius
-The angular momentum of an object cannot change unless an external twisting force (torque) is acting on it.
\square Earth experiences no twisting force as it orbits the Sun, so its rotation and orbit will continue indefinitely.

Angular momentum conservation also explains why objects rotate faster as they shrink in radius.

3.Conservation of Energy
aEnergy can be neither created nor destroyed.
It can change form or be exchanged between
objects.
The total energy in the universe was determined
in the Big Bang and remains the same today.
(1 ${ }^{\text {st }}$ law of thermodynamics)

$>$ Where do objects get their energy?
-Objects can gain or lose energy only by exchanging energy with other objects.
-Energy makes matter move

Basic Types of Energy	
aKinetic (motion)	
QRadiative (light)	
QPotential (stored)	
Energy can change type	
but cannot be destroyed.	

Thermal Energy:

The collective kinetic energy of many particles (for example, in a rock, in air, in water)

Gravitational Potential Energy
\square In space, an object or gas cloud has more gravitational energy when it is spread out than when it contracts.
\Rightarrow A contracting cloud converts gravitational potential energy to thermal energy.

4.4 The Force of Gravity

Our goals for learning:

- What determines the strength of gravity?
$>$ How does Newton's law of gravity extend Kepler's laws?
> How do gravity and energy together allow us to understand orbits?
>How does gravity cause tides?
- Concentrated energy can spontaneously turn into particles (for example, in particle accelerators).

- 3. Newton generalized Kepler's third law:
which allows us to calculate the mass of distant objects.

Newton's version of Kepler's third law

$$
p^{2}=\frac{4 \pi^{2}}{G\left(M_{1}+M_{2}\right)} a^{3}
$$

$p=$ orbital period
$a=$ average orbital distance (between centers)
$\left(M_{1}+M_{2}\right)=$ sum of object masses
2015 Pearson Education, lece
>How do gravity and energy together allow us to understand orbits?
\square Newton's extension of Kepler's laws explain stable orbits.

But orbits do not always stay the same.

Atmospheric Drag / Friction

\square Friction can cause
objects to lose orbital energy
-Loss of orbital
energy is converted
to thermo energy in
the atmosphere

Escape Velocity

If an object gains enough orbital energy, it may escape (change from a bound to unbound orbit).

Escape velocity from Earth \approx $11 \mathrm{~km} / \mathrm{s}$ from sea level (about 40,000 km/hr).

- Chemical potential energy from the rocket is converted to orbital energy

