

2.2 The Reason for Seasons

Our goals for learning:

- > What causes the seasons?
- How does the orientation of Earth's axis change with time?

- Seasons are opposite in the N and S hemispheres, so distance cannot be the reason for sessions.
- The real reason for seasons involves Earth's axis tilt.

0 2017 Pearson Education, Inc.

Solstices and equinoxes Summer (June) solstice: highest path; rise and set at most extreme north of due east Uvinter (December) solstice: lowest path; rise and set at most extreme south of due east Equinoxes: Sun rises Sun's path or Sun's path Sun's path on precisely due east and sets precisely due

west.

son Education, Inc.

Summary: Two conditions must be met to have an eclipse

1. It must be a full moon (for a lunar eclipse) or a new moon (for a solar eclipse).

AND

2. The Moon must be at or near one of the two points in its orbit where it crosses the ecliptic plane (its nodes).

Predicting Eclipses Compared to the series of the series

2.4 The Ancient Mystery of the Planets Our goals for learning: > Why was planetary motion so hard to explain? > Why did the ancient Greeks reject the real explanation for planetary motion?

>Why was planetary motion so hard to explain?

- Planets usually move slightly eastward from night to night relative to the stars.
- But sometimes they go westward relative to the stars for a few weeks: apparent retrograde motion.

Explaining Apparent Retrograde Motion

- Easy for us to explain: this occurs when we "lap" another planet (or when Mercury or Venus laps us).
- But it is very difficult to explain if you think that Earth is the center of the universe!
- In fact, ancients considered but rejected the correct explanation.

The Greeks knew that the lack of observable parallax could mean one of two things:

- 1. Stars are so far away that stellar parallax is too small to notice with the naked eye.
- 2. Earth does not orbit the Sun; it is the center of the universe.

With rare exceptions, such as Aristarchus, the Greeks rejected the correct explanation (1) because they did not think the stars could be *that* far away.

Thus the stage was set for the long, historical showdown between Earth-centered and Sun-centered systems.

© 2015 Pearson Education, Inc.