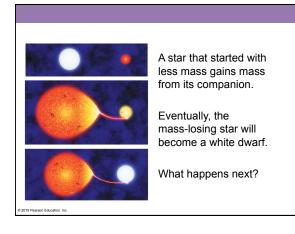
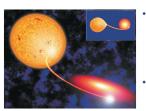
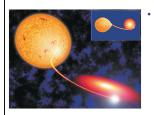

11/12/16


The White Dwarf Limit

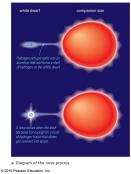
on Education, Inc.


- Quantum mechanics says that electrons must move faster as they are squeezed into a very small space.
- As a white dwarf's mass approaches 1.4M_{Sun}, its electrons must move at nearly the speed of light.
- Because nothing can move faster than light, a white dwarf cannot be more massive than 1.4M_{Sun}, the white dwarf limit (also known as the Chandrasekhar limit).

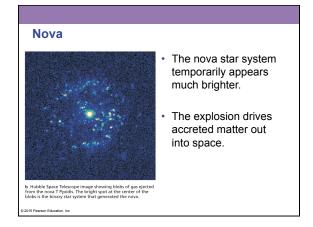
•What can happen to a white dwarf in a close binary system?



Accretion Disks

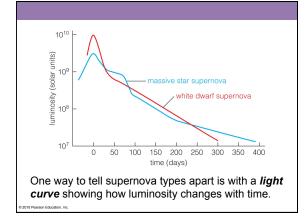

- Mass falling toward a white dwarf from its close binary companion has some angular momentum. The matter therefore
- orbits the white dwarf in an accretion disk.

Accretion Disks



Friction between orbiting rings of matter in the disk transfers angular momentum outward and causes the disk to heat up and glow.

Nova



- The temperature of accreted matter eventually becomes hot enough for hydrogen fusion.
- Fusion begins suddenly and explosively, causing a *nova*.

Two Types of Supernova

- Massive star supernova:
 - Iron core of massive star reaches white dwarf limit and collapses into a neutron star, causing an explosion.
- White dwarf supernova:
 - Carbon fusion suddenly begins as white dwarf in close binary system reaches white dwarf limit, causing a total explosion.

Nova or Supernova?

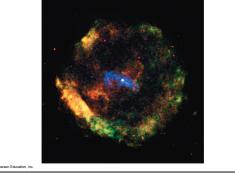
- Supernovae are MUCH MUCH more luminous than novae (about 10 million times)!!!
- Nova: H to He fusion of a layer of accreted matter; white dwarf left intact
- Supernova: complete explosion of white dwarf; nothing left behind

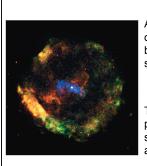
Supernova Types: Massive Star or White Dwarf?

- · Light curves differ
- Spectra differ (exploding white dwarfs don't have hydrogen absorption lines)

What have we learned?

- What is a white dwarf?
 - A white dwarf is the inert core of a dead star.
 - Electron degeneracy pressure balances the inward pull of gravity.
- What can happen to a white dwarf in a close binary system?
 - Matter from its close binary companion can fall onto the white dwarf through an accretion disk.
 - Accretion of matter can lead to novae and white dwarf supernovae.

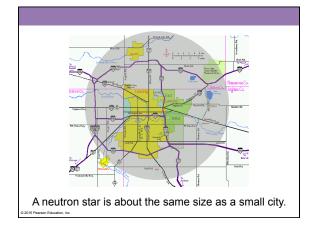

2015 Pearson Education, Inc.

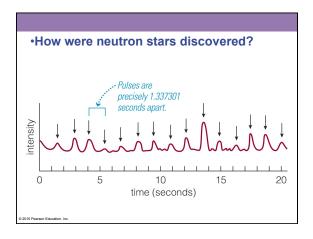

14.2 Neutron Stars

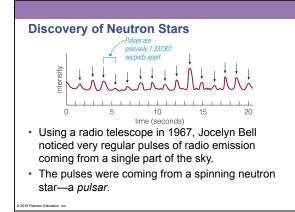
Our goals for learning:

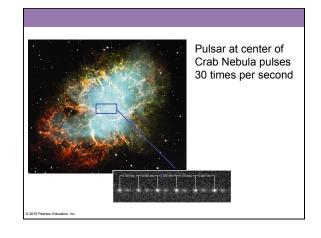
- What is a neutron star?
- How were neutron stars discovered?
- What can happen to a neutron star in a close binary system?

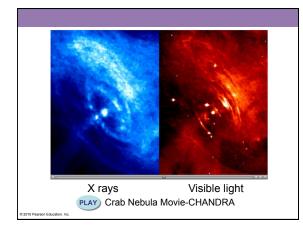
•What is a neutron star?

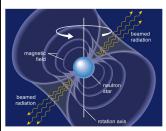


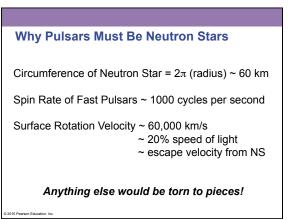

A neutron star is the ball of neutrons left behind by a massive-star supernova.


The degeneracy pressure of neutrons supports a neutron star against gravity. e p neutrino


Electron degeneracy pressure goes away because electrons combine with protons, making neutrons and neutrinos.


Neutrons collapse to the center, forming a *neutron star*.




Pulsars

A pulsar is a neutron star that beams radiation along a magnetic axis that is not aligned with the rotation axis.

a A pulsar is a rotating neutron star that beams radiation along its magnetic axis.

2015 Pearson Education, Inc.

Pulsars

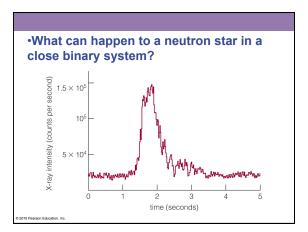
The radiation beams sweep through space like lighthouse beams as the neutron star rotates.

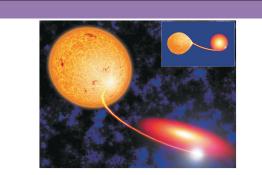
Pulsars spin fast because the core's spin speeds up as it collapses into a neutron star.

Conservation of angular momentum

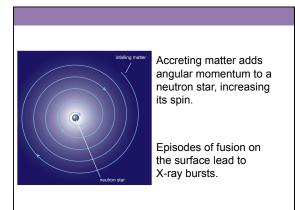
Thought Question

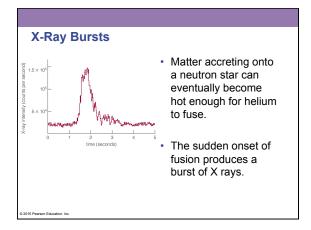
Could there be neutron stars that appear as pulsars to other civilizations but not to us?


- A. Yes
- B. No


Thought Question

Could there be neutron stars that appear as pulsars to other civilizations but not to us?


A. Yes


B. No

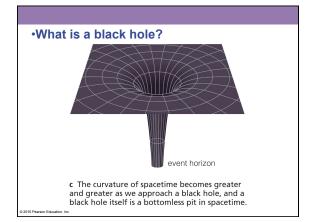
Matter falling toward a neutron star forms an accretion disk, just as in a white dwarf binary. 15 Pearson Education, Inc.

Neutron Star Limit

- Quantum mechanics says that neutrons in the same place cannot be in the same state.
- Neutron degeneracy pressure can no longer support a neutron star against gravity if its mass exceeds about 3M_{Sun}.

What have we learned?

- What is a neutron star?
 - A ball of neutrons left over from a massive star supernova and supported by neutron degeneracy pressure
- · How were neutron stars discovered?
 - Beams of radiation from a rotating neutron star sweep through space like lighthouse beams, making them appear to pulse.
 - Observations of these pulses were the first evidence for neutron stars.

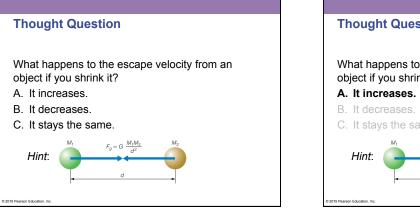

What have we learned?

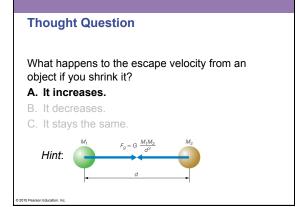
- What can happen to a neutron star in a close binary system?
 - The accretion disk around a neutron star gets hot enough to produce X-rays, making the system an X-ray binary.
 - Sudden fusion events periodically occur on the surface of an accreting neutron star, producing X-ray bursts.

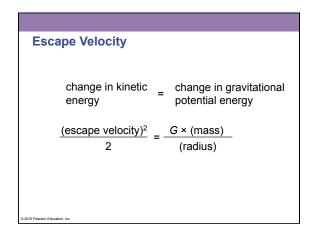
14.3 Black Holes: Gravity's Ultimate Victory

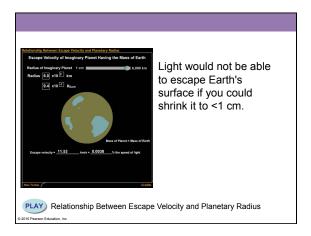
Our goals for learning:

- What is a black hole?
- What would it be like to visit a black hole?
- · Do black holes really exist?

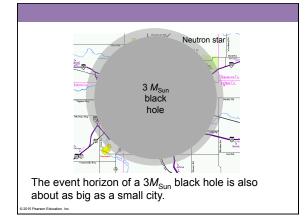

What is a black hole?

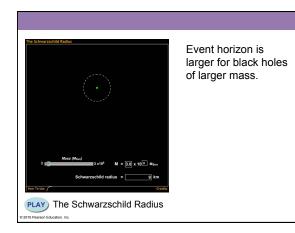

- A black hole is an object whose gravity is so powerful that not even light can escape it.
- Some massive star supernovae can make a black hole if enough mass falls onto the core.

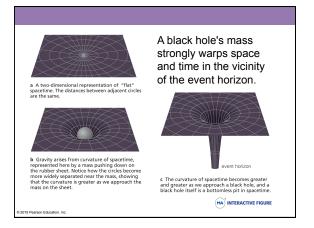

Thought Question


What happens to the escape velocity from an object if you shrink it?

- A. It increases.
- B. It decreases.
- C. It stays the same.



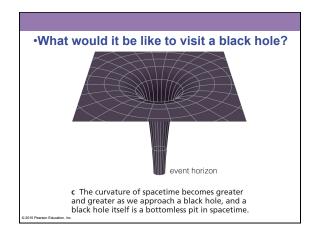


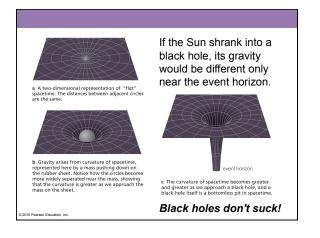


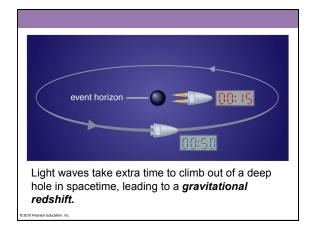
Surface of a Black Hole

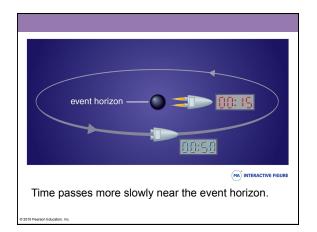
- The "surface" of a black hole is the radius at which the escape velocity equals the speed of light.
- This spherical surface is known as the event horizon.
- The radius of the event horizon is known as the *Schwarzschild radius.*

No Escape


2015 Pearson Education, Inc.


- Nothing can escape from within the event horizon because nothing can go faster than light.
- No escape means there is no more contact with something that falls in. It increases the hole's mass, changes its spin or charge, but otherwise loses its identity.


Singularity


son Education, Inc

- Beyond the neutron star limit, no known force can resist the crush of gravity.
- As far as we know, gravity crushes all the matter into a single point known as a *singularity*.

Thought Question

Is it easy or hard to fall into a black hole?

- A. Easy
- B. Hard

2015 Pearson Education, Inc.

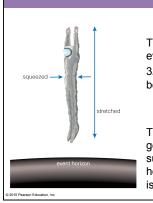
Thought Question

Is it easy or hard to fall into a black hole?

- A. Easy
- B. Hard

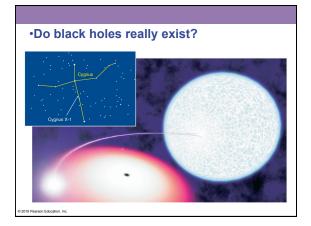
015 Pearson Education, Inc.

(*Hint*: A black hole with the same mass as the Sun wouldn't be much bigger than a college campus.)


Thought Question

Is it easy or hard to fall into a black hole?

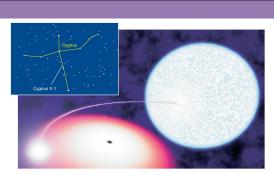
A. Easy


B. Hard

(*Hint*: A black hole with the same mass as the Sun wouldn't be much bigger than a college campus.)

Tidal forces near the event horizon of a $3M_{Sun}$ black hole would be lethal to humans.

Tidal forces would be gentler near a supermassive black hole because its radius is much bigger.

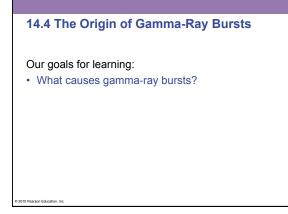


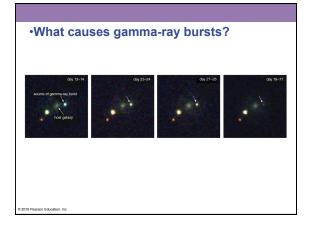
Black Hole Verification

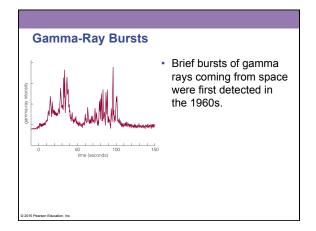
- Need to measure mass
 - Use orbital properties of companion
 - Measure velocity and distance of orbiting gas
- It's a black hole if it's not a star and its mass exceeds the neutron star limit ($\sim 3M_{Sun}$).

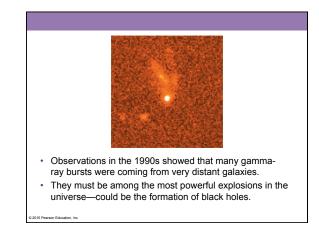
Some X-ray binaries contain compact objects of mass exceeding $3M_{\rm Sun}$ that are likely to be black holes.

One famous X-ray binary with a likely black hole is in the constellation Cygnus.


What have we learned?


- What is a black hole?
 - A black hole is a massive object whose radius is so small that the escape velocity exceeds the speed of light.
- What would it be like to visit a black hole?
 - You can orbit a black hole like any other object of the same mass—black holes don't suck!
 - Near the event horizon, time slows down and tidal forces are very strong.


015 Pearson Education, Inc.


What have we learned?

- Do black holes really exist?
 - Some X-ray binaries contain compact objects too massive to be neutron stars—they are almost certainly black holes.

<text><figure><list-item><list-item><list-item><complex-block>

What have we learned?

earson Education, Inc.

- What causes gamma-ray bursts?
 - Gamma-ray bursts are among the most powerful explosions in the universe and probably signify the formation of black holes.
 - At least some gamma-ray bursts come from supernova explosions in distant galaxies.