
10.1 Detecting Planets Around Other Stars

Our goals for learning:

- How do we detect planets around other stars?

Why are extrasolar planets difficult to detect?

- A Sun-like star is about a billion times brighter than the light reflected from its planets.
- Planets are close to their stars, relative to the distance from us to the star.
- This is like being in San Francisco and trying to see a pinhead 15 meters from a grapefruit in Washington, D.C.

Planet Detection
- Direct: pictures or spectra of the planets
themselves
- Indirect: measurements of stellar properties
revealing the effects of orbiting planets

- This reduces the star's apparent brightness and tells us planet's radius.
- Sometimes an eclipse - the planet passing behind the star, can also be detected

| Kepler | NASA's Kepler
 mission was launched
 in 2008 to begin
 looking for transiting
 planets.
 It is designed to
 measure the 0.008%
 decline in brightness
 when an Earth-mass
 planet eclipses a
 Sun-like star. |
| :--- | :--- | :--- |

Other Planet-Hunting Strategies

- Gravitational Lensing: Mass bends light in a special way when a star with planets passes in front of another star.
- Features in Dust Disks: Gaps, waves, or ripples in disks of dusty gas around stars can indicate presence of planets.

10.2 The Nature of Planets Around Other Stars

Our goals for learning:

- What properties of extrasolar planets can we measure?
- How do extrasolar planets compare with planets in our solar system?

Measurable Properties
- Orbital period, distance, and shape
- Planet mass, size, and density
- Atmospheric properties

What have we learned?

- How do we detect planets around other stars?
- Direct starlight is billions of times brighter than the starlight reflected from planets, making imaging extremely difficult.
- A star's periodic motion (detected through Doppler shifts or by measuring its motion across the sky) tells us about its planets.
- Transiting planets periodically reduce a star's brightness

What properties of extrasolar planets can we measure?

Planet Mass and Orbit Tilt

- We cannot measure an exact mass for a planet without knowing the tilt of its orbit, because Doppler shift tells us only the velocity toward or away from us.
- Doppler data give us lower limits on masses.

The Kepler 11 system

The periods and sizes of Kepler 11 's 6 known planets can be determined using transit data.

Calculating density

- Using mass, determined using the Doppler technique, and size, determined using the transit technique, density can be calculated.

Orbits of Extrasolar Planets

- Results from Kepler indicate that planets are common, and small planets greatly outnumber large planets!

What have we learned?

- What properties of extrasolar planets can we measure?
- Orbital properties, such as period, distance, and shape.
- Planetary properties, such as mass and size.
- Atmospheric properties, such as temperature and composition.
10.3 The Formation of Other Planetary Systems

Our goals for learning:

- Do we need to modify our theory of solar system formation?
- Are planetary systems like ours common?

Surprising Characteristics

- Some extrasolar planets have highly elliptical orbits.
- Planets show huge diversity in size and density.
- Some massive planets, called hot Jupiters, orbit very close to their stars.

What have we learned?

- How do extrasolar planets compare with planets in our solar system?
- Planets with a wide variety of masses and sizes.
- Many orbiting close to their stars and with large masses.

10.3 The Formation of Other Planetary
Systems
Our goals for learning:
• Do we need to modify our theory of solar system
formation?
- Are planetary systems like ours common?

Do we need to modify our theory of solar system formation?

Revisiting the Nebular Theory

- The nebular theory predicts that massive Jupiter-like planets should not form inside the frost line (at << 5 AU).
- The discovery of hot Jupiters has forced reexamination of nebular theory.
- Planetary migration or gravitational encounters may explain hot Jupiters.

Gravitational Encounters and Resonances

- Close gravitational encounters between two massive planets can eject one planet while flinging the other into a highly elliptical orbit.
- Multiple close encounters with smaller planetesimals can also cause inward migration.
- Resonances may also contribute.

Modifying the Nebular Theory

- Observations of extrasolar planets have shown that the nebular theory was incomplete.
- Effects like planetary migration and gravitational encounters might be more important than previously thought.

Planetary Migration

A young planet's motion can create waves in a planet-forming disk.
Models show that matter in these waves can tug on a planet, causing its orbit to migrate inward.

Planetary Types

- There seem to be a much greater variety of planet types than we find in our solar system.
- This includes gas giants with very different densities and water worlds.

What have we learned?

- Do we need to modify our theory of solar system formation?
- Original nebular theory cannot account for the existence of hot Jupiters.
- Planetary migration or gravitational encounters may explain how Jupiter-like planets moved inward.
- Are planetary systems like ours common?
- The answer is coming soon...

